A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys. A: Math. Gen. 284951
(http://iopscience.iop.org/0305-4470/28/17/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at $01: 21$

Please note that terms and conditions apply.

A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures

Manuel de León $\dagger \|$, David Martin de Diego \ddagger I and Paulo Pitanga§†t
\dagger Instituto de Matemáticas y Físical Fundamental, Consejo Superior de Investigaciones Cientfficas, Serrano 123, 28006 Madrid, Spain
\ddagger Departamento de Economía Aplicada Cuantitativa, Facultad de Ciencias Económicas y Empresariales, UNED, 28040 Madrid, Spain
§ Instituto de Física, Departamento de Física Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitaria, C T Bloco A, 21.944, Rio de Janeiro, RJ, Brazil

Received 21 April 1995

Abstract

Singular Lagrangian systems are studied in the framework of almost-product structures. The choice of an appropriate almost-product structure permits us to obtain the dynamics. The relationship with the Dirac bracket is also elucidated.

1. Introduction

The study of singular Lagrangian systems goes back to the seminal works of Dirac and Bergmann (see $[6,24,25,3]$). Their algorithm was later globalized by Gotay and Nester $[9,10,11]$, who introduced to the game the crucial role played by the almost-tangent structure of the phase space of velocities (see also the papers by Klein [15] and Grifone [14]). In fact, besides the ambiguity in the dynamics, the equations of motion have to be of second order.

The aim of this paper is to take a new look at degenerate Lagrangian systems from the geometrical point of view of almost-product structures. Roughly speaking, an almostproduct structure on a manifold M consists of two complementary distributions on M. Therefore, if $L: T Q \longrightarrow \mathbb{R}$ is a singular Lagrangian function, it is quite natural to take an almost-product structure on $T Q$ such that one of the two complementary distributions is just the singular distribution $\operatorname{ker} \omega_{L}$. The 'projection' of the system onto the regular distribution would give a 'regular' system with a completely determined dynamics. This approach is an alternative way of considering a quotient by the characteristic distribution $\operatorname{ker} \omega_{L}$ as studied by Cantrijn et al [5].

The use of almost-product structures in order to obtain the 'true' dynamics of the singular system was proposed in several recent papers (see de León and Rodrigues [17, 19], Pitanga [21, 22], Dubrovin et al [7] and references therein). In this paper, our approach is as follows. Consider a singular Lagrangian function $L: T Q \longrightarrow \mathbb{R}$ with presymplectic form ω_{L} and denote by M_{1} the manifold of primary constraints. Assume for simplicity that there

[^0]are no secondary constraints. If all the primary constraints are second class, then an almostproduct structure on the phase space of momenta $T^{*} Q$ may be defined and the projection of a Hamiltonian vector field corresponding to any extended Hamiltonian function gives the dynamics. Notice that the almost-product structure is closely related to the Dirac bracket. On the other hand, if all the constraints are first class, the dynamics is determined up to the choice of an almost-product structure on M_{1} adapted to the presymplectic form ω_{1}, where ω_{1} is the restriction of the canonical symplectic form ω_{Q}. Of course, if there are constraints of first and second class, we can combine both procedures. We remark that the role played by the second-class constraints is very similar to non-holonomic constraints in mechanics (see Pitanga [21]). In the mixed case we have to take two almost-product structures, one of them on $T^{*} Q$ and the other one on M_{1}. If there are secondary constraints, we can perform a similar procedure with minor changes.

The paper is structured as follows. Section 2 is devoted to recalling some results on almost-product structures adapted to presymplectic structures. In fact, a Poisson bracket may be defined in a presymplectic manifold by using an adapted almost-product structure. In section 3 we recall the Dirac-Bergmann-Gotay-Nester algorithm. The case of Lagrangian systems admitting a global dynamics is considered in section 4. Suitable almost-product structures are defined in order to fix the dynamics and our procedure is compared with the 'classical' ones. The case of Lagrangian systems with secondary constraints is studied in section 5. The Lagrangian and Hamiltonian formalisms are related by using Legendreprojectable almost-product structures on the velocity space in section 6, and the second-order differential equation problem is solved in section 7. The special case of affine Lagrangians on the velocities is studied in section 8. This type of Lagrangians deserves special features since the adapted almost-product structures coincide with the connections in the sense of Ehresmann. Several examples are studied throughout the paper in order to illustrate our procedure.

2. Almost-product structures adapted to presymplectic forms

In this section we recall some definitions and results on almost-product structures (see [18] and [7]).

An almost-product structure on a manifold M is a tensor field F of type $(1,1)$ on M such that $F^{2}=$ id. The manifold M will be called an almost-product manifold (see [18])

If we set:

$$
\mathcal{A}=\frac{1}{2}(\mathrm{id}+F) \quad \mathcal{B}=\frac{1}{2}(\mathrm{id}-F)
$$

then \mathcal{A} and \mathcal{B} are complementary projectors, i.e. $\mathcal{A}+\mathcal{B}=\mathrm{id}, \mathcal{A}^{2}=\mathcal{A}, \mathcal{B}^{2}=\mathcal{B}$, $\mathcal{A B}=\mathcal{B A}=0$.

We denote by $\operatorname{Im} \mathcal{A}$ and $\operatorname{Im} \mathcal{B}$ the corresponding complementary distributions. Hence $T M=\operatorname{Im} \mathcal{A} \oplus \operatorname{Im} \mathcal{B}$. We denote by \mathcal{A}^{*} and \mathcal{B}^{*} the transpose operators and $\operatorname{Im} \mathcal{A}^{*}$ and $\operatorname{Im} \mathcal{B}^{*}$ will be their corresponding images.

Definition 2.1. Let (M, ω) be a presymplectic manifold with a presymplectic form ω. An almost-product structure F on M is said to be adapted to ω if

$$
\operatorname{ker} \omega=\operatorname{ker} \mathcal{A} .
$$

Define the linear mapping $\mathrm{b}: \mathfrak{X}(M) \longrightarrow \wedge^{1}(M)$ by $b(X)=i_{X} \omega$. If F is adapted to ω, the restriction of b to the distribution \mathcal{A} induces an isomorphism $b: \operatorname{Im} \mathcal{A} \longrightarrow \operatorname{Im} \mathcal{A}^{*}$ of C^{∞}-modules.

Then, for an arbitrary 1 -form α the equation

$$
\begin{equation*}
i_{X} \omega=\mathcal{A}^{*} \alpha \tag{1}
\end{equation*}
$$

admits a unique solution $X_{\alpha, \mathcal{A}}$ such that $X_{(\alpha, \mathcal{A})} \in \operatorname{Im} \mathcal{A}$. For a function f on M we put $X_{f . \mathcal{A}}=\dot{X}_{\mathrm{d} f \mathcal{A}}$. Now, we define a bracket of functions as follows:

$$
\{f, g\}_{\mathcal{A}}=\omega\left(X_{f, \mathcal{A}}, X_{g, \mathcal{A}}\right)
$$

where $f, g \in C^{\infty}(M):\{,\}_{\mathcal{A}}$ satisfies all the properties of a Poisson bracket except the Jacobi identity, i.e.
(i) $\{a f, g\}_{\mathcal{A}}=a\{f, g\}_{\mathcal{A}}$, for all $a \in \mathbb{R}$
(ii) $\{f+g, h\}_{\mathcal{A}}=\{f, h\}_{\mathcal{A}}+\{g, h\}_{\mathcal{A}}$
(iii) $\{f, g\}_{\mathcal{A}}=-\{g, f\}_{\mathcal{A}}$
(iv) $\{f, g h\}_{\mathcal{A}}=\{f, g\}_{\mathcal{A}} h+g\{f, h\}_{\mathcal{A}}$
for all $f, g, h \in C^{\infty}(M)$.
We are going to prove that the Jacobi identity is equivalent to the integrability of the almost-product structure F (see Dubrovin et al [7]). Let us recall that an almost-product structure F is said to be integrable if both distributions $\operatorname{Im} \mathcal{A}$ and $\operatorname{Im} \mathcal{B}$ are integrable. In our case, the distribution $\operatorname{Im} \mathcal{B}=\operatorname{ker} \omega$ is always integrable, but $\operatorname{Im} \mathcal{A}$ is not necessarily so. We first prove the following lemma:

Lemma 2.1.

$$
\begin{aligned}
i_{\{(, \mathcal{R}] \mathcal{A}, \mathcal{A}} & \omega(Z)+i_{\left[X_{f, \mathcal{A}}, X_{\mathcal{R}, \mathcal{A}}\right]} \omega(Z) \\
\forall & =\mathcal{B}^{*}(\mathrm{~d} g)\left[X_{f, \mathcal{A}}, \mathcal{A} Z\right]-\mathcal{B}^{*}(\mathrm{~d} f)\left[X_{g_{1} \mathcal{A}}, \mathcal{A} Z\right] \\
\forall Z & \in \mathfrak{X}(M) \quad \forall f, g \in C^{\infty}(M)
\end{aligned}
$$

Proof. The proof follows by straighforward computation.
Proposition 2.1. The bracket $\{,\}_{\mathcal{A}}$ defined by the almost-product structure F satisfies the Jacobi identity if and only if the almost-product structure F is integrable.

Proof. If $\{,\}_{\mathcal{A}}$ satisfies the Jacobi identity then

$$
X_{\mid f, g\}_{\mathcal{A}}}=\left[X_{(g, \mathcal{A})}, X_{(f, \mathcal{A})}\right]
$$

for any two functions f and g on M. Since the vector fields $X_{(f, \mathcal{A})} \operatorname{span} \operatorname{Im} \mathcal{A}$ thus $\operatorname{Im} \mathcal{A}$ is integrable. Therefore, the almost-product structure F is integrable (see [18]).

Conversely, if F is integrable then from lemma 2.1 we deduce that:

$$
i_{\left.X_{(S, K)}\right)_{A}} \omega(Z)=i_{\left|X_{\{(,-A)}, X_{(S, A)}\right|} \omega(Z)
$$

Therefore, the vector fields $X_{\{f, g)_{A}}$ and $\left[X_{(f, \mathcal{A})}, X_{(g, \mathcal{A})}\right]$ differ by an element of ker ω. But, since the almost-product structure F is integrable, we deduce that $\left[X_{(f, \mathcal{A})}, X_{(g, \mathcal{A})}\right] \in \operatorname{Im} \mathcal{A}$. Thus, $X_{(f, g) A, \mathcal{A}}=\left[X_{(g, \mathcal{A})}, X_{(f, \mathcal{A})}\right]$.

As a consequence, if we assume that F is integrable, we have a Poisson manifold ($M,\{,\}_{\mathcal{A}}$) whose symplectic foliation is just $\operatorname{Im} \mathcal{A}$. Furthermore, the symplectic form on each leaf \mathcal{L} is just the restriction of the presymplectic form to \mathcal{L}. If we denote by $\hbar_{\mathcal{A}}: T^{*} M \longrightarrow T M$ the linear mapping defined by $\left\langle k_{\mathcal{A}}(\mathrm{d} f), \mathrm{d} g\right\rangle=\{g, f\}_{\mathcal{A}}$, then $X_{f . \mathcal{A}}=\mathfrak{q}_{\mathcal{A}}(\mathrm{d} f)$. Thus, $X_{H, \mathcal{A}} f=\{f, H\}_{\mathcal{A}}$, for any function f, where $H: M \longrightarrow \mathbb{R}$ is a Hamiltonian function.

Remark 2.1. In [7] an almost-product structure was called a generalized connection. The justification of this name is.the following. Suppose that $\operatorname{ker} \omega$ defines a regular foliating distribution, i.e. it is well-defined the quotient manifold $\bar{M}=M / \operatorname{ker} \omega$ and we have a fibred manifold $\pi: M \longrightarrow \bar{M}$. Hence $\operatorname{Im} \mathcal{A}$ defines a connection in π in the sense of Ehresmann since $\operatorname{ker} T \pi=\operatorname{ker} \omega$.

Remark 2.2. The existence of integrable almost-product structures on manifolds is a very difficult problem. A recent work on that topic is the paper by Gil et al [8] (see also [23,20]). They proved that the space of all almost-product structures which are adapted to a foliation \mathcal{F} on a manifold M is an analytic real manifold (of infinite dimension). The problem now is to identify which of them are integrable.

3. The constraint algorithm

Let Q be an m-dimensional manifold. Denote by $\tau_{Q}: T Q \longrightarrow Q$ the canonical projection. If $\left(q^{A}\right), 1 \leqslant A \leqslant m$ are local coordinates on a neighbourhood U of Q, we denote by (q^{A}, \dot{q}^{A}), $1 \leqslant A \leqslant m$, the induced coordinates on $T U$.

Consider a Lagrangian $L: T Q \longrightarrow \mathbb{R}$ such that the Hessian matrix

$$
\left(\frac{\partial^{2} L}{\partial \dot{q}^{A} \partial \dot{q}^{B}}\right)
$$

is not regular. This type of Lagrangian is called singular or degenerate, Let E_{L} be the energy associated with L, defined by $E_{L}=C L-L$, where C is the Liouville vector field on $T Q$. We denote by α_{L} the Poincare-Cartan 1-form defined by $\alpha_{L}=J^{*}(\mathrm{~d} L)$ and, by ω_{L} the Poincare-Cartan 2 -form given by $\omega_{L}=-\mathrm{d} \alpha_{L}$, where J is the canonical almost-tangent structure on $T Q$. We obtain a presymplectic system ($T Q, \omega_{L}, E_{L}$) and ω_{L} is supposed to be of constant rank. In the regular case, ω_{L} is symplectic and then the equation of motion

$$
\begin{equation*}
i_{X} \omega_{L}=\mathrm{d} E_{L} \tag{2}
\end{equation*}
$$

has a unique solution ξ_{L}, the Euler-Lagrange vector field; moreover, ξ_{L} is a second-order differential equation (SODE for brevity), that is, $J \xi_{L}=C$. In the degenerate case, (2) has no solution, in general, and even if it exists it will be neither unique nor a SODE.

The Legendre map Leg : $T Q \longrightarrow T^{*} Q$ is locally written as

$$
\text { Leg : }\left(q^{A}, \dot{q}^{A}\right) \rightsquigarrow\left(q^{A}, p_{A}\right)
$$

where $p_{A}=\partial L / \partial \dot{q}^{A}$ are the generalized momenta. We suppose that L is almost regular, i.e. $M_{1}=\operatorname{Leg}(T Q)$ is a submanifold of $T^{*} Q$ and Leg is a submersion onto M_{1} with connected fibres. In particular, this implies that the Hessian matrix is of constant rank. We denote by $L e g_{1}: T Q \longrightarrow M_{1}$ the restriction of $\operatorname{Leg}: T Q \longrightarrow T^{*} Q$ to its image. The submanifold M_{1} will be called the primary constraint submanifold. Moreover, we have that $\operatorname{ker} T L e g=\operatorname{ker} \omega_{L} \cap V(T Q)$. If the Lagrangian is almost regular, the energy E_{L} is constant along the fibres of Leg. Therefore, E_{L} projects onto a function h_{1} on M_{1}, i.e. $h_{1}(\operatorname{Leg}(x))=E_{L}(x), \forall x \in T Q$.

Let λ_{Q} be the Liouville 1 -form and $\omega_{Q}=-\mathrm{d} \lambda_{Q}$ the canonical symplectic form on $T^{*} Q$. Since ω_{Q} is symplectic, we have a Poisson bracket on $T^{*} Q$ defined by $\{F, G\}=\omega_{Q}\left(X_{F}, X_{G}\right), \forall F, G \in C^{\infty}\left(T^{*} Q\right)$. If we denote by $i: M_{1} \longrightarrow T^{*} Q$ the natural embedding of M_{1} into $T^{*} Q$, then we obtain a presymplectic system (M_{1}, ω_{1}, h_{1}), where $\omega_{1}=i^{*} \omega_{Q}$.

There appear $m-k$ independent constraints ϕ^{A} which describe M_{i}; they are the primary constraints, following the Dirac terminology (see [6]). Notice that if M_{1} is a
closed submanifold, then it is generated by a set of globally defined functions (see for instance [13]). If H is an arbitrary extension of h_{1} to $T^{*} Q$, all the Hamiltonian functions of the form

$$
\begin{equation*}
\tilde{H}=H+\lambda_{A} \phi^{A} \tag{3}
\end{equation*}
$$

where λ_{A} are Lagrange multipliers, are weakly equal, that is, $\tilde{H}_{/_{M_{1}}}=H_{/ M_{1}}=h_{1}$. The Hamilton equations of the motion are written in terms of the canonical Poisson bracket of $T^{*} Q$ as follows:

$$
\frac{\mathrm{d} q^{A}}{\mathrm{~d} t}=\left\{q^{A}, \tilde{H}\right\} \quad \frac{\mathrm{d} p_{A}}{\mathrm{~d} t}=\left\{p_{A}, \tilde{H}\right\} \quad \phi^{A}=0
$$

This shows that there exists an ambiguity in the description of the dynamics. Since ω_{Q} is symplectic, a solution of the equation $i_{X} \omega_{Q}=\mathrm{d} H$ always exists. The constraints must be preserved in the time or, equivalently, the solution X must be tangent to M_{i}. Then we get

$$
\left(\left\{\phi^{B}, \tilde{H}\right\}+\lambda_{A}\left\{\phi^{B}, \phi^{A}\right\}\right)_{/ M_{1}}=0
$$

The vanishing of these expressions can lead two kinds of consequences: some of the arbitrary functions λ_{A} may be determined or new constraints may arise. These new constraints are called secondary constraints. The primary and secondary constraints define the submanifold M_{2}.

Now, we can proceed in a similar way with the secondary constraints, because they should also be conserved in time. This process may be continued and if the initial problem is solvable, we arrive at some final constraint submanifold M_{f} where 'consistent' solutions exist.

It is possible to give a classification of the constraints generated by this algorithm in order to clarify the ambiguity of the dynamics. A constraint ϕ of M_{i} (the i-ary constraint submanifold) is said to be first class if $\left\{\phi, \phi^{A}\right\}_{M_{1}}=0$ for each constraint ϕ^{A} of M_{i}, and second class otherwise. Then, the coefficients of the primary first-class constraints on M_{f} in (3) are completely undetermined, while the coefficients of the primary second-class constraint are completely fixed.

For a more geometric point of view, the Gotay-Nester algorithm globalizes the DiracBergmann algorithm (see [9,4]). The Gotay-Nester algorithm is applicable in more general situations than the Dirac constraint algorithm. In fact, in [9], they develop a constraint algorithm for a generic presymplectic system (S, ω, H). They consider the points of S where

$$
\begin{equation*}
i_{X} \omega=\mathrm{d} H \tag{4}
\end{equation*}
$$

has a solution and suppose that this set S_{2} is a submanifold of S. Nevertheless, the solutions of (4) on S_{2} are not necessarily tangent to S_{2}. Hence, we consider the points of S_{2} on which there exists a solution which is tangent to S_{2}. Thus, a new submanifold S_{3} is obtained and the proccess may be continued. We have the following sequence of submanifolds:

$$
\cdots \rightarrow S_{k} \rightarrow \cdots \rightarrow S_{2} \rightarrow S_{1}=S
$$

Alternatively, these submanifolds can be described as follows:

$$
S_{i}=\left\{x \in S \mid v(H)=0, \forall v \in T_{x} S_{i-1}^{\perp}\right\}
$$

where

$$
T_{x} S_{i-1}^{\perp}=\left\{v \in T_{x} S \mid \omega(x)(u, v)=0, \forall u \in T_{x} S_{i-1}\right\}
$$

We call S_{2} the secondary constraint submanifold, S_{3} the tertiary constraint submanifold, and, in general, S_{i} is the i-ary constraint submanifold. If the algorithm stabilizes, that is, there exists a positive integer k such that $S_{k}=S_{k+1}$ and $\operatorname{dim} S_{k}>0$, then we have a final submanifold S_{f} where, by construction, a solution X on S_{f} exists, i.e. $X \in \mathcal{X}\left(S_{f}\right)$ verifies that

$$
\begin{equation*}
\left(i_{X} \omega=\mathrm{d} H\right)_{/ S_{f}} \tag{5}
\end{equation*}
$$

The Gotay-Nester algorithm generalizes the Dirac constraint algorithm when we consider the particular presymplectic system (M_{1}, ω_{1}, h_{1}). In [9,10], Gotay and Nester have proved that the presymplectic systems ($T Q, \omega_{L}, E_{L}$) and (M_{1}, ω_{1}, h_{1}) are equivalent, that is, both descriptions, Lagrangian and Hamiltonian ones, are related by the Legendre transformation.

4. Lagrangian systems with a global dynamics

First, we suppose that the presymplectic system ($T Q, \omega_{L}, E_{L}$) admits a global dynamics, i.e. there exists at least a vector field ξ on $T Q$ such that ξ satisfies the equation of the motion $i_{\xi} \omega_{L}=\mathrm{d} E_{L}$. In such a case, the submanifold $M_{1}=\operatorname{Leg}(T Q)$ of $T^{*} Q$ is the final constraint submanifold or, in other words, there are no secondary constraints.

We distinguish three particular cases:
(i) all the primary constraints are second class,
(ii) all are first class, and
(iii) there exist first- and second-class constraints.

4.1. All the primary constraints are second class

We denote by $\Phi^{A}, 1 \leqslant A \leqslant s$, the constraints of M_{1}. The matrix with elements $C^{A B}=\left\{\Phi^{A}, \Phi^{B}\right\}$ is non-singular on M_{1} and, in the sequel, we assume for simplicity that this matrix is non-singular in the entire phase space $T^{*} Q$. This matrix is also skewsymmetric and, then, the number of second-class constraints is even. We denote by $\left(C_{A B}\right)$ its inverse matrix.

As in [2], we consider the smooth distribution D generated by the vector fields $X_{\phi \Lambda}$. A direct computation shows that
$D^{\perp}(x)=\left\{v \in T_{x} T^{*} Q / \omega_{Q}(x)(v, w)=0 \quad \forall w \in D(x)\right\}=T_{x} M_{1} \quad \forall x \in M_{1}$.
Let $\mathcal{Q}: D \oplus D^{\perp} \longrightarrow D$ be the projection onto D along D^{\perp} and $\mathcal{P}=$ id $-\mathcal{Q}$. The projector \mathcal{Q} is given by

$$
Q=C_{A B} X_{\Phi^{\wedge}} \otimes d \Phi^{B}
$$

Take the 2 -form $\Omega_{D}=\mathcal{P}^{*} \omega_{Q}$ (that is, $\mathcal{P}^{*} \omega_{Q}(X, Y)=\omega_{Q}(\mathcal{P} X, \mathcal{P} Y)$). Ω_{D} is a presymplectic form with constant rank $2 m-s$. Moreover, the almost-product structure $(\mathcal{P}, \mathcal{Q})$ is adapted to Ω_{D}, that is, $\operatorname{ker} \mathcal{P}=\operatorname{ker} \Omega_{D}=D$. Thus, we can define a bracket $\{F, G\}_{D}$, called the Dirac bracket, on $T^{*} Q$ as follows:

$$
\begin{aligned}
\{F, G\}_{D} & =\Omega_{D}\left(X_{F}, X_{G}\right)=\omega_{Q}\left(\mathcal{P} X_{F}, \mathcal{P} X_{G}\right) \\
& =\omega_{Q}\left(X_{F}-C_{A B}\left\{\Phi^{B}, F\right\} X_{\Phi^{A}}, X_{G}-C_{A^{\prime} B^{\prime}}\left\{\Phi^{B^{\prime}}, G\right\} X_{\Phi^{A^{\prime}}}\right) \\
& =\{F, G\}-\left\{F, \Phi^{A}\right\} C_{A B}\left\{\Phi^{B}, G\right\}
\end{aligned}
$$

Consider now the projected Hamiltonian function $h_{1}: M_{1} \longrightarrow \mathbb{R}$ defined by $h_{1} \circ \mathrm{Leg}=$ E_{L}. We can extend h_{1} to a function H on a neigborhood U of $T^{*} Q$ and the Dirac theory argues that the Hamiltonians on U should be of the form

$$
\tilde{H}=H+\lambda_{A} \Phi^{A}
$$

We consider the Hamiltonian vector field $X_{\tilde{H}}$. The consistency of the theory demands that the constraints Φ_{A} be preserved by $X_{\vec{H}}$; geometrically this means that the vector field $X_{\vec{H}}$ must be tangent to M_{1}.

Consider the vector field

$$
\mathcal{P} X_{H}=X_{H}-C_{A B}\left\{\Phi^{B}, H\right\} X_{\Phi \wedge} .
$$

By definition of the almost-product structure (\mathcal{P}, \mathcal{Q}), $\mathcal{P} X_{H}$ is tangent to M_{1} and its restriction to $M_{1}, \mathcal{P} X_{H / M_{1}}$, is the unique solution of the equations of motion, that is,

$$
i_{\mathcal{P}_{X_{1}}{ }_{M_{1}}} \omega_{1}=\mathrm{d} h_{1}
$$

because ω_{1} is symplectic. Moreover, if the distribution D is integrable, then the Dirac bracket $\{,\}_{D}$ is in fact a Poisson bracket. In that case, when we consider on M_{1} the Poisson bracket $\left\}_{1}\right.$ defined by the symplectic structure ω_{1} and on $T^{*} Q$ the Dirac bracket $\{,\}_{D}$, we get that the canonical embedding $i: M_{1} \longrightarrow T^{*} Q$ is a Poisson morphism, that is,

$$
i^{*}\{F, G\}_{D}=\left\{i^{*} F, i^{*} G\right\}_{1} \quad \forall F, G \in C^{\infty}\left(T^{*} Q\right)
$$

The above results are summarized in table 1 .

Table 1. Second-class primary constraints
$T^{*} Q \quad T^{*} Q \quad M_{\perp}$

ω_{Q}	Ω_{D}	ω_{1}
$\{\}$,	$\{,\}_{D}$	$\{,\}_{1}$
	(\mathcal{P}, Q)	

Example 4.1. Let $L: T \mathbb{R}^{4} \longrightarrow \mathbb{R}$ be the Lagrangian defined by (see [1])

$$
L\left(q^{A}, \dot{q}^{A}\right)=\left(q^{2}+q^{3}\right) \dot{q}^{1}+q^{4} \dot{q}^{3}+\frac{1}{2}\left(\left(q^{4}\right)^{2}-2 q^{2} q^{3}-\left(q^{3}\right)^{2}\right) .
$$

Since
$q p_{1}=\frac{\partial L}{\partial \dot{q}^{1}}=q^{2}+q^{3} \quad p_{2}=\frac{\partial L}{\partial \dot{q}^{2}}=0 \quad p_{3}=\frac{\partial L}{\partial \dot{q}^{3}}=q^{4} \quad p_{4}=\frac{\partial L}{\partial \dot{q}^{4}}=0$
we obtain the following primary constraints:
$\Phi_{1}=p_{1}-q^{2}-q^{3} \quad \Phi_{2}=p_{2} \quad \Phi_{3}=p_{3}-q^{4} \quad \Phi_{4}=p_{4}$.

All of them are second-class constraints. Let C be the matrix

$$
\left(C^{A B}\right)=\left(\left\{\Phi^{A}, \Phi^{B}\right\}\right)=\left(\begin{array}{rrrr}
0 & -1 & -1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Hence, we obtain an almost-product structure (\mathcal{P}, \mathcal{Q}) defined by

$$
\mathcal{Q}=C_{A B} X_{\Phi^{A}} \otimes d \Phi^{B}
$$

or, in canonical coordinates on $T^{*} Q$

$$
\begin{aligned}
\mathcal{Q}=\frac{\partial}{\partial q^{2}} \otimes \mathrm{~d} q^{2} & +\frac{\partial}{\partial q^{2}} \otimes \mathrm{~d} q^{3}+\frac{\partial}{\partial q^{4}} \otimes \mathrm{~d} q^{4}-\frac{\partial}{\partial q^{2}} \otimes \mathrm{~d} p_{1} \\
& +\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{4}}+\frac{\partial}{\partial p_{2}}+\frac{\partial}{\partial p_{3}}\right) \otimes \mathrm{d} p_{1}-\frac{\partial}{\partial q^{4}} \otimes \mathrm{~d} p_{3} \\
& +\left(\frac{\partial}{\partial q^{3}}-\frac{\partial}{\partial q^{2}}+\frac{\partial}{\partial p_{4}}\right) \otimes \mathrm{d} p_{4} .
\end{aligned}
$$

The presymplectic 2 -form Ω_{D} is
$\Omega_{D}=\mathrm{d} q^{1} \wedge \mathrm{~d} p_{1}-\mathrm{d} q^{3} \wedge \mathrm{~d} p_{2}+\mathrm{d} q^{3} \wedge \mathrm{~d} p_{3}+\mathrm{d} p_{1} \wedge \mathrm{~d} p_{2}-\mathrm{d} p_{2} \wedge \mathrm{~d} p_{4}+\mathrm{d} p_{3} \wedge \mathrm{~d} p_{4}$.
The 1 -form ω_{1} is given in local coordinates $\left(q^{A}\right)$ on M_{1} by

$$
\omega_{1}=\mathrm{d} q^{1} \wedge \mathrm{~d} q^{2}+\mathrm{d} q^{1} \wedge \mathrm{~d} q^{3}+\mathrm{d} q^{3} \wedge \mathrm{~d} q^{4}
$$

which is obviously a symplectic form. The unique solution $\xi_{M_{1}}$ of the equation $i_{X} \omega_{1}=\mathrm{d} h_{1}$ is precisely

$$
\xi_{M_{1}}=q^{3} \frac{\partial}{\partial q^{1}}-q^{4} \frac{\partial}{\partial q^{2}}+q^{4} \frac{\partial}{\partial q^{3}}-q^{2} \frac{\partial}{\partial q^{4}} .
$$

Therefore, if H is an arbitrary extension of h_{1} to $T^{*} Q$ then we set $\mathcal{P}\left(X_{H}\right)_{/_{1}}=\xi_{M_{1}}$. The Lagrangian L is affine on the velocities. The general case will be studied in section 8.

4.2. All the primary constraints are of first class

We denote by $\phi^{i}, 1 \leqslant i \leqslant p$, the first-class constraints. Since $\left\{\phi^{i}, \phi^{j}\right\} / w_{1}=0$, then $X_{\phi_{i}}$, $1 \leqslant i \leqslant p$, the Hamiltonian vector field of ϕ^{i}, is tangent to M_{1}. Notice that the submanifold M_{1} is coisotropic into $T^{*} Q$.

Since ker ω_{1} is generated by the restrictions of the Hamiltonian vector fields $X_{\phi^{j}}$ of the first-class constraints, in order to fix the gauge, we take an almost structure $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ on M_{1} adapted to ker ω_{1}. Moreover, if the almost-product structure is integrable, we can define a Poisson bracket on M_{1} as follows:

$$
\{f, g\}_{\mathcal{A}_{1}}=\omega_{1}\left(X_{f, \mathcal{A}_{1}}, X_{g, \mathcal{A}_{1}}\right) \quad \forall f, g \in C^{\infty}\left(M_{1}\right)
$$

where $X_{f, \mathcal{A}_{1}}$ and $X_{g, \mathcal{A}_{1}}$ are the unique vector fields on M_{1} which belong to $\operatorname{Im} \mathcal{A}_{1}$ and verify that $i_{X_{j, A_{1}}} \omega_{1}=\mathcal{A}_{1}^{*} \mathrm{~d} f$ and $i_{X_{k-A_{1}}} \omega_{1}=\mathcal{A}_{1}^{*} \mathrm{~d} g$, respectively. Therefore, if ξ is a solution of
the equation of motion, that is, $i_{\xi} \omega_{1}=\mathrm{d} h_{1}$, we can select a unique solution $\mathcal{A}_{1} \xi$ such that $\mathcal{A}_{1} \xi \in \operatorname{Im} \mathcal{A}_{1}$. Thus we have fixed the gauge.

The results of this section are summarized in table 2.

Table 2. First-class primary constraints.

$T^{*} Q$
ω_{Q}
$\{\}$,

Now, consider an arbitrary extension H to $T^{*} Q$ of the Hamiltonian $h_{1}: M_{1} \longrightarrow \mathbb{R}$. Since we have a global dynamics, the Hamiltonian vector field X_{H} is tangent to M_{1}, i.e. $X_{H / M_{1}} \in \mathfrak{X}\left(M_{1}\right)$ and

$$
i_{X_{n_{M_{1}}}} \omega_{1}=\mathrm{d} h_{1}
$$

We fix the gauge by taking $\mathcal{A}_{1}\left(X_{H / M_{1}}\right)$.
The classical procedure is the following (see [27]). Choose functions $\left\{f^{j}, 1 \leqslant j \leqslant p\right\}$, on $T^{*} Q$ such that the matrix $\left(\left\{\phi^{i}, f^{j}\right\}\right)=\left(c^{i j}\right)$ is regular. The determinant of this matrix is called the Fadeev-Popov determinant. If we impose the tangency of the Hamiltonian vector fields of the Hamiltonian functions $\tilde{H}=H+\lambda_{i} \phi^{i}$ to the submanifold defined by the new constraints $\left\{f^{j}\right\}$, we get that

$$
\lambda_{/ M_{1}}^{i}=\left(c_{i j}\left\{H, \phi^{j}\right\}\right)_{/ M_{1}} .
$$

Thus we have fixed the gauge. It is easy to prove that fixing the gauge is equivalent to take an almost-product structure (\mathcal{P}, \mathcal{Q}) on $T^{*} Q$ where

$$
\mathcal{Q}=c_{i j} X_{\phi^{\prime}} \otimes \mathrm{d} f^{j}
$$

The almost-product structure (\mathcal{P}, \mathcal{Q}) restricts to M_{1} and this restriction ($\mathcal{P}_{/ M_{1}}, \mathcal{Q}_{M_{1}}$) is adapted to ω_{1}. Thus

$$
\mathcal{P}\left(X_{H}\right)_{/ M_{1}}=X_{h_{1}, \mathcal{P}_{M_{1}}}
$$

Example 4.2. Consider the Lagrangian function $L: T \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
L=\frac{1}{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2} .
$$

(see Krupková [16]). Here $\left(q^{1}, q^{2}, q^{3}\right)$ are the standard coordinates on \mathbb{R}^{3} and ($q^{1}, q^{2}, q^{3}, \dot{q}^{1}, \dot{q}^{2}, \dot{q}^{3}$) the induced ones on $T \mathbb{R}^{3}$.

The energy and the Poincare-Cartan forms are

$$
\begin{aligned}
& E_{L}=\frac{1}{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}=L \\
& \alpha_{L}=\left(\dot{q}_{1}+\dot{q}_{2}\right) \mathrm{d} q_{1}+\left(\dot{q}_{1}+\dot{q}_{2}\right) \mathrm{d} q_{2} \\
& \omega_{L}=\mathrm{d} q_{1} \wedge \mathrm{~d} \dot{q}_{1}+\mathrm{d} q_{1} \wedge \mathrm{~d} \dot{q}_{2}+\mathrm{d} q_{2} \wedge \mathrm{~d} \dot{q}_{1}+\mathrm{d} q_{2} \wedge \mathrm{~d} \dot{q}_{2} .
\end{aligned}
$$

There are no secondary constraints, i.e. we have a global dynamics. Since

$$
p_{1}=\frac{\partial L}{\partial \dot{q}^{1}}=\dot{q}^{1}+\dot{q}^{2} \quad p_{2}=\frac{\partial L}{\partial \dot{q}^{2}}=\dot{q}^{1}+\dot{q}^{2} \quad p_{3}=\frac{\partial L}{\partial \dot{q}^{1}}=0
$$

we deduce that the submanifold M_{1} of $T^{*} \mathbb{R}^{3}$ is defined by the following primary constraints:

$$
\phi_{1}=p_{1}-p_{2}=0 \quad \phi_{2}=p_{3}=0
$$

Since $\left\{\phi_{1}, \phi_{2}\right\}=0$, then both constraints are first class. If we take coordinates ($q^{1}, q^{2}, q^{3}, p_{1}$) on M_{1}, we obtain that

$$
\omega_{1}=i^{*} \omega_{Q}=\mathrm{d} q^{1} \wedge \mathrm{~d} p_{1}+\mathrm{d} q^{2} \wedge \mathrm{~d} p_{1}
$$

where

$$
i\left(q^{1}, q^{2}, q^{3}, p_{1}\right)=\left(q^{1}, q^{2}, q^{3}, p_{1}, p_{1}, 0\right)
$$

Thus, $\operatorname{ker} \omega_{1}$ is generated by

$$
\left\{\frac{\partial}{\partial q^{3}}, \frac{\partial}{\partial q^{1}}-\frac{\partial}{\partial q^{2}}\right\}
$$

The almost-product structure $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ on M_{1} defined by

$$
\mathcal{A}_{1}\left(\frac{\partial}{\partial q^{1}}\right)=\frac{\partial}{\partial q^{1}} \quad \mathcal{A}_{1}\left(\frac{\partial}{\partial q^{2}}\right)=\frac{\partial}{\partial q^{1}} \quad \mathcal{A}_{1}\left(\frac{\partial}{\partial q^{3}}\right)=0 \quad \mathcal{A}_{1}\left(\frac{\partial}{\partial p^{1}}\right)=\frac{\partial}{\partial p^{1}}
$$

where $\mathcal{B}_{1}=\mathrm{id}-\mathcal{A}_{1} ;\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ is integrable and adapted to ω_{1}. Then it defines a Poisson bracket $\{,\}_{M_{1}}$ on M_{1}. Since

$$
\begin{array}{ll}
X_{q^{1}, \mathcal{A}^{1}}=-\frac{\partial}{\partial p^{1}} & X_{q^{2}, \mathcal{A}^{1}}=-\frac{\partial}{\partial p^{1}} \\
X_{q^{3}, \mathcal{A}^{1}}=0 & X_{p^{1}, \mathcal{A}^{1}}=\frac{1}{2}\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{2}}\right)
\end{array}
$$

we get

$$
\begin{array}{lll}
\left\{q^{1}, q^{2}\right\}_{\mathcal{A}_{1}}=0 & \left\{q^{1}, q^{3}\right\}_{\mathcal{A}_{1}}=0 & \left\{q^{2}, q^{3}\right\}_{\mathcal{A}_{1}}=0 \\
\left\{q^{1}, p_{1}\right\}_{\mathcal{A}_{1}}=-1 & \left\{q^{2}, p_{1}\right\}_{\mathcal{A}_{1}}=-1 & \left\{q^{3}, p_{1}\right\}_{\mathcal{A}_{1}}=0
\end{array}
$$

If ξ is a vector field on M_{1} which is a solution of the equations of motion, i.e. $i_{\xi} \omega_{1}=\mathrm{d} h_{1}$, then we fix a unique solution by taking $\mathcal{A}_{1}(\xi)=X_{h_{1}, \mathcal{A}_{1}}$. In that case, we have

$$
X_{h_{1}, \mathcal{A}_{1}}=p_{1} \frac{\partial}{\partial q^{1}}+p_{1} \frac{\partial}{\partial q^{2}} .
$$

4.3. There exist first- and second-class constraints

We denote by $\Phi^{A}, 1 \leqslant A \leqslant s$ the second-class constraints and by $\phi^{i}, 1 \leqslant i \leqslant p$, the first-class constraints.

As in the first case, we can construct an almost-product structure (\mathcal{P}, \mathcal{Q}) on $T^{*} Q$ with \mathcal{Q} given by

$$
\mathcal{Q}=C_{A B} X_{\Phi^{A}} \otimes d \Phi^{B}
$$

Here, $\left(C_{A B}\right)$ is the inverse matrix of ($\left\{\Phi^{A}, \Phi^{B}\right\}$). We also have the presymplectic form $\Omega_{D}=\mathcal{P}^{*} \omega_{Q}$ with constant rank $2 m-s$ and the Dirac bracket

$$
\{F, G\}_{D}=\{F, G\}-\left\{F, \Phi^{A}\right\} C_{A B}\left\{\Phi^{B}, G\right\} .
$$

If we consider an arbitrary extension H of the Hamiltonian h_{1}, since we have a global dynamics, then the vector field $\mathcal{P}\left(X_{H}\right)$ is tangent to M_{1}. Now, we fix the gauge taking the vector field $\mathcal{A}_{1}\left(\mathcal{P}\left(X_{H}\right)_{/ m_{1}}\right)$, where $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ is some almost-product structure adapted to ω_{1}.

The the results of this section are summarized in table 3.

Table 3. First- and second-class primary constraints.

5. Lagrangian systems with secondary constraints

We denote by $\left\{\Phi^{A}, \phi^{i} ; 1 \leqslant A \leqslant s, 1 \leqslant i \leqslant p\right\}$ the set of primary second- and first-class constraints.

We apply the Gotay-Nester algorithm to the presymplectic system $\left(M_{1}, \omega_{1}, h_{1}\right)$ and we obtain a sequence of submanifolds

$$
M_{f} \longrightarrow \cdots \longrightarrow M_{k} \longrightarrow M_{k-1} \longrightarrow \cdots \longrightarrow M_{2} \longrightarrow M_{1} \longrightarrow T^{*} Q
$$

Here, we suppose that the algorithm stabilizes, that is, there exists a positive integer k such that $M_{k+1}=M_{k}$ and $\operatorname{dim} M_{k}>0$. We denote by M_{f} the final constraint submanifold. The constraint submanifold will be determined by all the primary and secondary constraints (for simplicity, we call secondary constrain each constraint which is not primary). Now, we can classify all these constraints of M_{f} in two classes: first-class constraints and secondclass. We denote by $\left\{\bar{\Phi}^{B}, 1 \leqslant B \leqslant \bar{s}\right\}$ the secondary second-class constraints and by $\left\{\bar{\phi}^{j}, 1 \leqslant j \leqslant \bar{p}\right\}$ the secondary first-class constraints. The primary second-class constraints of M_{1} are also second-class on M_{f} but the primary first-class constraints may be first or
second class on M_{f}. Then, we can suppose that $\left\{\phi^{i^{\prime}}, 1 \leqslant i^{\prime} \leqslant p^{\prime}\right\}$ are primary first-class constraints which are also first class on M_{f} and $\left\{\phi^{i^{\prime \prime}}, 1 \leqslant i^{\prime \prime} \leqslant p^{\prime \prime}\right\}$ are primary first-class constraints which are second class on M_{f}, where $p^{\prime}+p^{\prime \prime}=p$. We then have the following classification of constraints on M_{f} :

$$
\begin{aligned}
& \left\{\phi^{i^{\prime}}, \bar{\phi}^{j}, \mathrm{I} \leqslant i^{\prime} \leqslant p^{\prime}, 1 \leqslant j \leqslant \bar{p}\right\} \quad \text { first-class constraints on } M_{f} \\
& \left\{\phi^{i^{\prime \prime}}, \Phi^{A}, \bar{\Phi}^{B}, 1 \leqslant i^{\prime \prime} \leqslant p^{\prime \prime}, \mathrm{I} \leqslant A \leqslant s, \mathrm{I} \leqslant B \leqslant \bar{s}\right\} \\
& \text { second-class constraints on } M_{f}
\end{aligned}
$$

We denote by $\left\{\chi^{\alpha}\right\}$ all the second-class constraints on M_{f} which are used to define an almost-product structure $(\mathcal{P}, \mathcal{Q})$ on $T^{*} Q$, where the projector \mathcal{Q} is defined as follows:

$$
\mathcal{Q}=C_{\alpha \beta} X_{\chi^{a}} \otimes \mathrm{~d} \chi^{\beta}
$$

${ }_{\left(C_{\alpha \beta}\right)}$ being the inverse of the matrix $\left(\left\{\chi^{\alpha}, \chi^{\beta}\right\}\right)$. As in subsection 4.1 , we define the Dirac bracket

$$
\{F, G\}_{D}=\{F, G\}-\left\{F, \chi^{\alpha}\right\} C_{\alpha \beta}\left\{\chi^{\beta}, G\right\}
$$

for any functions $F, G \in C^{\infty}\left(T^{*} Q\right)$.
We now consider a local extension H of h_{1} to $T^{*} Q$. Take the vector field X_{H} and its projection $\mathcal{P}\left(X_{H}\right)$. Then, $\mathcal{P}\left(X_{H}\right)$ is tangent to M_{f}, and, moreover, it is a solution of the equation of motion, that is

$$
\left(i_{\mathcal{P}\left(X_{H}\right)_{M_{j}}} \omega_{1}=\mathrm{d} h_{1}\right)_{/ \mu_{f}}
$$

In order to fix the gauge, consider an almost-product structure $\left(\left(\mathcal{A}_{1}\right)_{f},\left(\mathcal{B}_{1}\right)_{f}\right)$ on M_{f} such that it is adapted to the distribution $\operatorname{ker} \omega_{1} \cap T M_{f}$, i.e. $\operatorname{ker}\left(\mathcal{B}_{1}\right)_{f}=\operatorname{ker} \omega_{1} \cap T M_{f}$. Now, it is sufficient to take $\left(\mathcal{A}_{1}\right)_{f}\left(\mathcal{P}\left(X_{H}\right)_{M_{s}}\right)$ and the gauge will remain fixed. If we consider the 'extended' Hamiltonian (an extension of the Hamiltonian h_{1} where we have account of all the constraints of M_{f}, see [12]), then it is convenient to use, in order to fix the gauge, an almost-product structure $\left(\mathcal{A}_{f}, \mathcal{B}_{f}\right)$ on M_{f} adapted to $\operatorname{ker} \omega_{f}$, where $\omega_{f}=i_{f}^{*} \omega_{Q}$. Here, we denote by $j_{f}: M_{f} \longrightarrow T^{*} Q$ the canonical embedding. We fix the gauge by taking $\mathcal{A}_{f}\left(\mathcal{P}\left(X_{H}\right)_{/ w_{f}}\right)$.

The results of this section are summarized in table 4.

Table 4. The general case.

Example 5.1. Let $L: T \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the degenerate Lagrangian given by (see [4]):

$$
L\left(q^{A}, \dot{q}^{A}\right)=\frac{1}{2}\left(\dot{q}^{1}\right)^{2}+\frac{1}{2}\left(q^{1}\right)^{2} q^{2}
$$

The Legendre map is

$$
\operatorname{Leg}\left(q^{1}, q^{2}, \dot{q}^{1}, \dot{q}^{2}\right)=\left(q^{1}, q^{2}, \dot{q}^{1}, 0\right)
$$

and we have a primary constraint $\phi^{1}=p_{2}$. Consistency of this constraints leads to a secondary constraint: $\Phi^{2}=q^{1}$ and, consistency of Φ^{1} gives the tertiary constraint $\Phi^{3}=p_{1}$. Since Φ^{2} and Φ^{3} are second-class constraints, then the projector \mathcal{Q} is given by

$$
\mathcal{Q}=-X_{q^{1}} \otimes \mathrm{~d} p_{1}+X_{p_{1}} \otimes \mathrm{~d} q^{1}=\frac{\partial}{\partial q^{1}} \otimes \mathrm{~d} q^{1}+\frac{\partial}{\partial p_{1}} \otimes \mathrm{~d} p_{1}
$$

and the Dirac bracket $\{,\}_{D}$ is

$$
\begin{array}{lll}
\left\{q^{1}, q^{2}\right\}_{D}=0 & \left\{q^{1}, p_{1}\right\}_{D}=0 & \left\{q^{1}, p_{2}\right\}_{D}=0 \\
\left\{q^{2}, p_{1}\right\}_{D}=0 & \left\{q^{2}, p_{2}\right\}_{D}=1 & \left\{p_{1}, p_{2}\right\}_{D}=0
\end{array}
$$

The Hamiltonian $h_{1}: M_{1} \longrightarrow \mathbb{R}$ is

$$
h_{1}=\frac{1}{2}\left(p_{1}\right)^{2}-\frac{1}{2}\left(q^{1}\right)^{2} q^{2}
$$

An arbitrary extension to $T^{*} Q$ is given by: $H=\frac{1}{2}\left(p_{1}\right)^{2}-\frac{1}{2}\left(q^{1}\right)^{2} q^{2}+\lambda p_{2}$, whose Hamiltonian vector field is

$$
\begin{gathered}
X_{H}=\left(p_{1}+p_{2} \frac{\partial \lambda}{\partial p_{1}}\right) \frac{\partial}{\partial q^{1}}+\left(\lambda+p_{2} \frac{\partial \lambda}{\partial p_{2}}\right) \frac{\partial}{\partial q^{2}}+\left(q^{1} q^{2}-p_{2} \frac{\partial \lambda}{\partial q^{1}}\right) \frac{\partial}{\partial p_{1}} \\
+\left(\frac{1}{2}\left(q^{1}\right)^{2}-p_{2} \frac{\partial \lambda}{\partial q^{2}}\right) \frac{\partial}{\partial p_{2}}
\end{gathered}
$$

and we then have
$\mathcal{P}\left(X_{H}\right)=(\mathrm{id}-\mathcal{Q})\left(X_{H}\right)=\left(\lambda+p_{2} \frac{\partial \lambda}{\partial p_{2}}\right) \frac{\partial}{\partial q^{2}}+\left(\frac{1}{2}\left(q^{3}\right)^{2}-p_{2} \frac{\partial \lambda}{\partial q^{2}}\right) \frac{\partial}{\partial p_{2}}$.
The restriction of $\mathcal{P}\left(X_{H}\right)$ to $M_{3}=\left\{\left(q^{1}, q^{2}, p_{1}, p_{2}\right) \in T^{*} \mathbb{R}^{2} / q^{1}=0, p_{1}=0, p_{2}=0\right\}$ is precisely

$$
\mathcal{P}\left(X_{H}\right)_{M_{M_{3}}}=\lambda \frac{\partial}{\partial q^{2}}
$$

and, therefore, the dynamics is fully undetermined.

6. Legendre projectable almost-product structures

Now, we want to relate the Lagrangian and Hamiltonian formulations when we have an almost-product structure which is Leg-projectable on $T Q$. For simplicity, we only consider Lagrangian systems which admit a global dynamics. A generalization for general degenerate Lagrangian systems is straightforward.

The following proposition gives a necessary and sufficient condition for an almostproduct structure on $T Q$ to be projectable onto M_{1}.

Proposition 6.1. Let \tilde{F} be an almost-product structure which is adapted to the presymplectic 2 -form ω_{L}. Then, \tilde{F} is $L e g_{1}$-projectable onto M_{1} if and only if

$$
\tilde{\mathcal{B}}[Z, \tilde{\mathcal{A}} X] \in V(T Q) \quad \forall Z \in \operatorname{ker} T \text { Leg } \quad \forall X \in \mathfrak{X}(T Q)
$$

where $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{B}}$ are the projectors associated with \check{F}.
Proof. The almost-product structure \tilde{F} is projectable if and only if (see [5])
(i) $\tilde{\mathcal{A}}(\operatorname{ker} T L e g) \subset \operatorname{ker} T L e g$
(ii) $\operatorname{Im}\left(L_{Z} \tilde{\mathcal{A}}\right) \subset \operatorname{ker} T L e g \forall Z \in \operatorname{ker} T L e g$.

Since $\operatorname{ker} T L e g=V(T Q) \cap \operatorname{ker} \omega_{L}$, then $\overline{\mathcal{A}}(\operatorname{ker} T L e g)=0$. Now, for all vector fields Y on $T Q$ and $Z \in \operatorname{ker} T L e g$, we have that

$$
\begin{aligned}
L_{Z} \tilde{\mathcal{A}}(Y) & =[Z, \tilde{\mathcal{A}} Y]-\tilde{\mathcal{A}}[Z, Y]=[Z, \tilde{\mathcal{A}} Y]-\tilde{\mathcal{A}}[Z, \tilde{\mathcal{A}} Y]-\tilde{\mathcal{A}}[Z, \tilde{\mathcal{B}} Y] \\
& =[Z, \tilde{\mathcal{A}} Y]-\tilde{\mathcal{A}}[Z, \tilde{\mathcal{A}} Y]=\tilde{\mathcal{B}}[Z, \tilde{\mathcal{A}} Y]
\end{aligned}
$$

because $\operatorname{ker} \omega_{L}$ is an integrable distribution.
Corollary 6.I. If the almost-product structure \bar{F} adapted to ω_{L} commutes with the canonical almost-tangent structure J, that is, $J \bar{F}=\tilde{F} J$, then \tilde{F} is projectable onto an almost-product structure on M_{1} if and only if

$$
J[Z, \tilde{\mathcal{A}} Y] \in \operatorname{Im} \tilde{\mathcal{A}} \quad \forall Y \in \mathfrak{X}(T Q) \quad \forall Z \in \operatorname{ker} T L e g .
$$

Let F be an almost-product structure on the configuration space Q and let F^{c} be the complete lift of F to $T Q$. Let us recall that F^{c} is defined by:

$$
F^{c}\left(X^{\mathrm{c}}\right)=(F(X))^{\mathrm{c}} \quad F^{\mathrm{c}}\left(X^{\vee}\right)=(F(X))^{v} \quad \forall X \in \mathfrak{X}(Q)
$$

where X^{c} and X^{\vee} denote the complete and vertical lift of the vector field X, respectively. F^{c} is an almost-product structure on $T Q$ and F^{c} is integrable if and only if F is integrable. If \mathcal{A} and \mathcal{B} are the corresponding projectors of F then $\mathcal{A}^{\mathcal{C}}$ and \mathcal{B}^{c} are the corresponding ones of F^{c}. We deduce that $\operatorname{Im} \mathcal{A}^{c}$ is, in fact, the complete lift of the distribution $\operatorname{Im} \mathcal{A}$. In a similar way, we have that $\operatorname{Im} \mathcal{B}^{\boldsymbol{c}}=(\operatorname{Im} \mathcal{B})^{c}$. These kind of distributions are called tangent in [5].

Corollary 6.2. If the almost-product structure F^{c} is adapted to ω_{L} then it is projectable onto M_{1}.

Proof. Since $J F^{\mathfrak{c}}=F^{\mathrm{c}} J$, from corollary 6.1, we only need to prove that

$$
J\left[Z, \mathcal{A}^{c} Y\right] \in \operatorname{Im} \mathcal{A}^{c} \quad \forall Y \in \mathfrak{X}(T Q) \quad \forall Z \in \operatorname{ker} T L e g .
$$

If $\left\{X_{1}, X_{2}, \cdots, X_{r}\right\}$ is a local basis of $\operatorname{Im} \mathcal{A}$, then $\left\{X_{1}^{\mathrm{c}}, X_{2}^{\mathrm{c}}, \cdots, X_{r}^{\mathrm{c}}, X_{1}^{\mathrm{v}}, X_{2}^{\mathrm{v}}, \cdots, X_{r}^{\mathrm{v}}\right\}$ is a local basis of $\operatorname{Im} \mathcal{A}^{\mathrm{c}}$. Thus, since $\left[Z, X_{i}^{\vee}\right]$ and $\left[Z, X_{i}^{\mathrm{c}}\right]$ are vertical vector fields, for all $1 \leqslant i \leqslant r$, we get that F^{c} is projectable.

Proposition 6.2. Let \tilde{F} be an integrable almost-product structure adapted to ω_{L} and projectable onto M_{1}. Then, its projection F_{1} is also integrable and adapted to ω_{1}.

Proof. The integrability of \tilde{F} is trivial because the Nijenhuis tensor $N_{\tilde{F}}$ of \tilde{F}, projects onto the Nijenhuis tensor $N_{F_{1}}$ of the projection F_{1}.

Since $\operatorname{Leg}{ }_{1}^{*} \omega_{1}=\omega_{L}$ and $\operatorname{ker} \tilde{\mathcal{A}}=\operatorname{ker} \omega_{L}$, then for all $\bar{Z} \in \mathfrak{X}\left(M_{1}\right)$ such that $i_{\tilde{Z}} \omega_{1}=0$ and for all vector field $Z \in \mathfrak{X}(T Q)$ which is Leg_{1}-projectable onto \bar{Z}, i.e. $T \operatorname{Leg}_{1}(Z)=\bar{Z}$, we obtain that

$$
0=L e g_{1}^{*}\left(i_{\tilde{Z}} \omega_{1}\right)=i_{Z} L e g_{1}^{*} \omega_{1}=i_{Z} \omega_{L}
$$

Thus, $Z \in \operatorname{ker} \omega_{L}=\operatorname{ker} \tilde{\mathcal{A}}$. Therefore, its projection $\bar{Z} \in \operatorname{ker} \mathcal{A}_{1}$. Hence, we have proved that $\operatorname{ker} \omega_{1} \subset \operatorname{ker} \mathcal{A}_{1}$. That $\operatorname{ker} \mathcal{A}_{1} \subset \operatorname{ker} \omega_{1}$ is proved by a similar device.

Next, we suppose that \tilde{F} is an integrable almost-product structure on $T Q$ which is adapted to ω_{L} and projectable onto M_{1}. We denote by $\{,\}_{\mathcal{A}}$ the Poisson bracket defined on $T Q$. If F_{1} is the projected integrable almost-product structure on M_{1}, we know that F_{1} is adapted to ω_{1}. Denote by $\{,\}_{\mathcal{A}_{1}}$ the corresponding Poisson bracket on M_{1}. We are going to relate both Poisson brackets.

Lemma 6.1. For a function \bar{f} on M_{1}, we have that $X_{\tilde{f} \circ L e g_{1}, \tilde{\mathcal{A}}}$ is projectable onto $X_{\bar{f}, \mathcal{A}_{1}}$. Proof. First, we prove that $X_{\bar{f}_{\circ} L e g_{1} . \overline{\mathcal{A}}}$ is Leg $_{1}$-projectable, that is,

$$
\left[X_{\tilde{f} \operatorname{Leg}, \bar{A}, \bar{A}}, \tilde{z}\right] \in \operatorname{ker} T L e g \quad \forall \tilde{Z} \in \operatorname{ker} T L e g .
$$

In fact,

$$
\begin{aligned}
& =-i_{\bar{Z}} \mathrm{~d}\left(i_{X_{\bar{f} L L E \sum_{1}, \hat{A}}} \omega_{L}\right) \\
& =-i_{\tilde{z}} \mathrm{~d}\left(\tilde{\mathcal{A}}^{*} d\left(\tilde{f} \circ L e g_{1}\right)\right) \\
& =-i_{\bar{Z}} L e g_{1}^{*} d\left(\tilde{\mathcal{A}}_{1}^{*} d(\bar{f})\right) \\
& =0
\end{aligned}
$$

from which we get $\left[X_{\bar{f} \circ L e g_{1} . \tilde{\mathcal{A}}}, \tilde{Z}\right] \in \operatorname{ker} \omega_{L}$. From proposition 6.1 , we deduce that

$$
\left[X_{\tilde{f o L e g}_{1}, \tilde{\mathcal{A}}}, \tilde{Z}\right] \in V(T Q)
$$

and, $X_{\text {foLeg }_{1}, \mathcal{A}}$ is thus projectable. Moreover, since

$$
i_{x_{\bar{f}, \operatorname{trx}, \tilde{A}},{ }_{\mathcal{A}}} \omega_{L} \tilde{\mathcal{A}}^{*} d\left(\bar{f} \circ \operatorname{Leg}_{1}\right)
$$

its projection $T \operatorname{Leg}\left(X_{\text {foLeg }_{1}, \hat{\mathcal{A}}}\right)$ verifies that

$$
i_{T L e g\left(X_{\text {jllesel, } \mathcal{A}}\right)} \omega_{M_{1}}=\mathcal{A}_{\mathrm{i}}^{*} d(\bar{f})
$$

Therefore, we obtain $T \operatorname{Leg}\left(X_{\tilde{f} \circ L e g_{1}, \tilde{\mathcal{A}}}\right)=T \operatorname{Leg}\left(X_{\tilde{f}_{1, \mathcal{A}_{1}}}\right)$.
Proposition 6.3. The map Leg $_{1}: T Q \longrightarrow M_{1}$ is a Poisson morphism, that is,

$$
\left\{\bar{f}_{1}, \bar{f}_{2}\right\}_{\mathcal{A}_{1}} \circ \text { Leg }_{1}=\left\{\bar{f}_{1} \circ \text { Leg }_{1}, \bar{f}_{2} \circ \text { Leg }_{1}\right\}_{\tilde{\mathcal{A}}} \quad \forall \bar{f}_{1}, \bar{f}_{2} \in C^{\infty}\left(M_{1}\right) .
$$

Proof. From lemma 6.1, we have that

$$
\begin{aligned}
\left\{\bar{f}_{1}, \bar{f}_{2}\right\}_{\mathcal{A}_{1}} \circ \operatorname{Leg}_{1} & =\operatorname{Lee_{1}^{*}}\left(\omega_{M_{1}}\left(X_{\tilde{f}_{1}, \mathcal{A}_{1}}, X_{\bar{f}_{2}, \mathcal{A}_{1}}\right)\right) \\
& =\omega_{L}\left(X_{\tilde{f}_{1} 0 L e_{1}, \dot{\mathcal{L}}}, X_{\tilde{f}_{2} \circ L e g_{1}, \mathcal{A}}\right) \\
& =\left\{\bar{f}_{1} \circ \operatorname{Leg}_{1}, \tilde{f}_{2} \circ \operatorname{Leg}_{1}\right\}_{\overline{\mathcal{A}}}
\end{aligned}
$$

for any functions f_{1} and f_{2} on M_{1}.
Example 6.I. Consider the Lagrangian function defined in example 4.2. A direct computation shows that $\operatorname{ker} \omega_{L}$ is generated by

$$
\left\{\frac{\partial}{\partial q_{1}}-\frac{\partial}{\partial q_{2}}, \frac{\partial}{\partial q_{3}}, \frac{\partial}{\partial \dot{q}_{1}}-\frac{\partial}{\partial \dot{q}_{2}}, \frac{\partial}{\partial \dot{q}_{3}}\right\} .
$$

Let F be an almost-product structure on Q defined as follows:

$$
F\left(\frac{\partial}{\partial q^{1}}\right)=\frac{\partial}{\partial q^{1}}, F\left(\frac{\partial}{\partial q^{2}}\right)=2 \frac{\partial}{\partial q^{1}}-\frac{\partial}{\partial q^{2}}, F\left(\frac{\partial}{\partial q^{3}}\right)=-\frac{\partial}{\partial q^{3}} .
$$

The matrix representations of the corresponding projectors, \mathcal{A} and \mathcal{B}, are respectively

$$
\mathcal{A}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \mathcal{B}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The complete lifts of the (1,1)-tensor fields $\mathcal{A}^{\boldsymbol{c}}$ and $\mathcal{B}^{\mathfrak{c}}$ are:

$$
\mathcal{A}^{\mathfrak{c}}=\left(\begin{array}{cc}
\mathcal{A} & 0 \\
0 & \mathcal{A}
\end{array}\right) \quad \text { and } \quad \mathcal{B}^{\mathfrak{c}}=\left(\begin{array}{cc}
\mathcal{B} & 0 \\
0 & \mathcal{B}
\end{array}\right)
$$

The almost-product structure F^{c} is integrable and adapted to the presymplectic form ω_{L}. Since

$$
\begin{array}{ll}
X_{q^{1}, A \mathcal{A}^{c}}=-\frac{1}{2}\left(\frac{\partial}{\partial \dot{q}^{1}}+\frac{\partial}{\partial \dot{q}^{2}}\right) & X_{q^{2}, A c}=-\frac{1}{2}\left(\frac{\partial}{\partial \dot{q}^{1}}+\frac{\partial}{\partial \dot{q}^{2}}\right) \\
X_{q^{3}, A A^{c}}=0 & X_{\dot{q}^{1}, A A^{c}}=\frac{1}{2}\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{2}}\right) \\
X_{\dot{q}^{2}, A^{e}}=\frac{1}{2}\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{2}}\right) & X_{\dot{q}^{3}, A c}=0
\end{array}
$$

the Poisson bracket on $T Q$ is given by

$$
\begin{aligned}
& \left\{q^{1}, q^{2}\right\}_{\mathcal{A}^{c}}=0 \quad\left\{q^{1}, q^{3}\right\}_{\mathcal{A}^{c}}=0 \quad\left\{q^{2}, q^{3}\right\}_{\mathcal{A}^{c}}=0 \\
& \left\{\dot{q}^{1}, \dot{q}^{2}\right\}_{A^{c}}=0 \quad\left\{\dot{q}^{1}, \dot{q}^{3}\right\}_{\mathcal{A}^{c}}=0 \quad\left\{\dot{q}^{2}, \dot{q}^{3}\right\}_{\mathcal{A}^{c}}=0 \\
& \left\{q^{1}, \dot{q}^{1}\right\}_{\mathcal{A}^{c}}=-1 \quad\left\{q^{1}, \dot{q}^{2}\right\}_{\mathcal{A}^{c}}=-1 \quad\left\{q^{1}, \dot{q}^{3}\right\}_{\mathcal{A}^{c}}=0 \\
& \left\{q^{2}, \dot{q}^{1}\right\}_{\mathcal{A}^{c}}=-1 \quad\left\{q^{2}, \dot{q}^{2}\right\}_{\mathcal{A}^{c}}=-1 \quad\left\{q^{2}, \dot{q}^{3}\right\}_{\mathcal{A}^{c}}=0 \\
& \left\{q^{3}, \dot{q}^{1}\right\}_{A^{e}}=0 \quad\left\{q^{3}, \dot{q}^{2}\right\}_{\mathcal{A}^{c}}=0 \quad\left\{q^{3}, \dot{q}^{3}\right\}_{\mathcal{A}^{C}}=0 .
\end{aligned}
$$

From corollary 6.2 and from proposition $6.2, F^{\mathrm{c}}$ is Leg1-projectable. Moreover, it projects onto the integrable almost-product structure ($\mathcal{A}_{1}, \mathcal{B}_{1}$) defined in example 4.2.

7. The second-order differential equation problem

As we know, a solution of the equation $i_{X} \omega_{L}=\mathrm{d} E_{L}$ (if it exists) is not necessarily a sODE, that is a vector field X on $T Q$ such that $J X=C$. If L is almost regular, in $[9,11]$, Gotay and Nester have constructed a submanifold S of the final constraint submanifold P_{f} on which there exists a vector field ξ such that

$$
\begin{equation*}
\left(i_{\xi} \omega_{L}=\mathrm{d} E_{L}\right)_{/ s} \quad(J \xi=C)_{/ s} \tag{6}
\end{equation*}
$$

By introducing a suitable almost-product structure on P_{f} we shall construct a submanifold S of P_{f} on which there exists an almost-product structure $\left(\mathcal{A}_{S}, \mathcal{B}_{S}\right)$ and a vector field ξ such that verifies (6) and, moreover, $\xi \in \operatorname{Im} \mathcal{A}_{s}$.

We first suppose that the presymplectic system ($T Q, \omega_{L}, E_{L}$) admits a global dynamics. Consider an almost-product structure $(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})$ adapted to ker ω_{L} which is projectable onto an almost-product structure $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ on M_{1}.

Remark 7.1. If ξ is any solution of equation of motion $i_{X} \omega_{L}=\mathrm{d} E_{L}$ then $\tilde{\mathcal{A}}(\xi)$ is a solution, too. Moreover, if the almost-product structure is Leg-projectable then $\overline{\mathcal{A}}(\xi)$ is projectable onto $\mathcal{A}_{1} Z$, where Z is any solution of the equation $i_{X} \omega_{1}=\mathrm{d} h_{1}$.

From remark 7.1, given a vector field ξ on $T Q$ which is a solution of the equation of motion

$$
i_{\xi} \omega_{L}=\mathrm{d} E_{L}
$$

then the vector field $\tilde{\mathcal{A}}(\xi)$ is projectable onto $\mathrm{A}_{1}(Z)$ and both are solutions of their respective equations of motion. As in [9,11], there exists a unique point x in each fibre of Leg $_{1}: T Q \longrightarrow M_{1}$ (where Leg $=i_{1} \circ$ Leg), such that $\tilde{\mathcal{A}}(\xi)$ verifies the second-order differential equation (SODE) condition at x, i.e. $(J(\tilde{\mathcal{A}}(\xi)))_{x}=C_{x}$. Consider the subset

$$
\begin{equation*}
S=\left\{x \in T Q /(J(\tilde{\mathcal{A}}(\xi)))_{x}=C_{x}\right\} \tag{7}
\end{equation*}
$$

In local coordinates, if $\tilde{\mathcal{A}}(\xi)$ is locally written as

$$
\tilde{\mathcal{A}}(\xi)=\Xi^{A} \frac{\partial}{\partial q^{A}}+\tilde{\Xi}^{A} \frac{\partial}{\partial \dot{q}^{A}}
$$

Then, if $z=\operatorname{Leg}(x) \in M_{1}$, and we identify z with the fibre which contains x, we deduce that Ξ^{A} is constant along the fibre. Moreover,

$$
U=J(\tilde{\mathcal{A}} \xi)-C=\left(\Xi^{A}-\dot{q}^{A}\right) \frac{\partial}{\partial \dot{q}^{A}}
$$

is tangent to the fibres. Let $\sigma(t)=\left(q^{A}(t), \dot{q}^{A}(t)\right)$ be the integral curve of U which contains the point x with coordinates $\left(q_{0}^{A}, \dot{q}_{0}^{A}\right)$. We deduce that

$$
\sigma(t)=\left(q_{0}^{A}, \Xi^{A}-e^{-t}\left(\Xi^{A}-\dot{q}_{0}^{A}\right)\right) .
$$

Then, we obtain

$$
\bar{x}=\lim _{t \rightarrow \infty} \sigma(t)=\left(q_{0}^{A}, \Xi^{A}\right)
$$

Thus, the point \bar{x} with coordinates $\left(q_{0}^{A}, \Xi^{A}\right)$ is in the same fibre than x, since the fibres are closed. Moreover, $U(\bar{x})=0$, and, therefore, $\tilde{\mathcal{A}}(\xi)$ verifies the SODE condition at the point \bar{x}.

We obtain a differentiable section $\sigma: M_{1} \longrightarrow T Q$ of Leg_{1} and its image $S=\sigma\left(M_{1}\right)$ is a submanifold of $T Q$, on which $\tilde{\mathcal{A}}(\xi)$ verifies the SODE condition. In general, $\tilde{\mathcal{A}}(\xi)$ is not tangent to S, but the vector field $T \sigma\left(\mathcal{A}_{1}(Z)\right)$ is tangent to S, it is a solution of the equation

$$
\left(i_{X} \omega_{L}=\mathrm{d} E_{L}\right)_{/ s}
$$

and also satisfies the SODE condition. Moreover, since $\sigma: M_{1} \longrightarrow S$ is a diffeomorphism, the almost-product structure $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ on M_{1} induces an almost-product structure ($\mathcal{A}_{S}, \mathcal{B}_{S}$) on S such that for any solution of equation ξ_{s}

$$
\begin{equation*}
\left(i_{X} \omega_{L}=\mathrm{d} E_{L}\right)_{/ s} \tag{8}
\end{equation*}
$$

We have that

$$
\mathcal{A}_{s}\left(\xi_{s}\right)=T \sigma\left(\mathcal{A}_{1}(Z)\right)
$$

Summarizing, we have obtained the following result:
Proposition 7.1. Let ξ be any solution of the equation of motion

$$
i_{\xi} \omega_{L}=\mathrm{d} E_{L}
$$

and $(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})$ an almost-product structure adapted to ω_{L} which is Leg-projectable onto an almost-product structure on M_{1} and let S be the submanifold defined in (7). Then:
(i) There exists an almost-product structure $\left(\mathcal{A}_{S}, \mathcal{B}_{S}\right)$ adapted to the restriction of ω_{L} to S. (ii) If ξ_{S} is any solution of (8) then $\mathcal{A}_{S}\left(\xi_{S}\right)$ is a solution which verifies the sode condition.

In the general case, we apply the Gotay-Nester algorithm to the presymplectic system given by ($T Q, \omega_{L}, E_{L}$). If the algorithm stabilizes, we denote by P_{f}, the final constraint submanifold. Consider on P_{f} an almost-product structure adapted to ker $\omega_{L} \cap T P_{f}$ which is projectable onto M_{f}. Hence, by using a similar procedure to that used in proposition 7.1, we can obtain an almost-product structure ($\mathcal{A}_{S}, \mathcal{B}_{S}$) on S adapted ker $\omega_{L} \cap T S$ and a unique solution of the equation of motion $i_{X} \omega_{L}=\mathrm{d} E_{L}$ tangent to S which also verifies the SODE condition. Moreover, that solution belongs to $\operatorname{Im} \mathcal{A}_{s}$. We can also consider the equation:

$$
i_{X} \omega_{P_{S}}=d\left(E_{L}\right)_{p_{P}}
$$

where $\omega_{M_{f}}=j_{f}^{*} \omega_{L}$, being $j_{f}: P_{f} \longrightarrow T Q$ the canonical embedding. Let $\left(\mathcal{A}_{f}, \mathcal{B}_{f}\right)$ be an almost-product structure adapted to $\operatorname{ker} \omega_{P_{P}}$ which is projectable to M_{f} (the final constraint submanifold on the Hamiltonian side). Then, from proposition 7.1 we obtain an almostproduct structure adapted to ω_{S} where $\omega_{S}=j_{S}^{*} \omega_{L}$, being $j_{S}: S \longrightarrow P_{f}$ the canonical embedding. Moreover, if ξ is a solution of the equation

$$
i_{X} \omega_{S}=j_{s}^{*} \mathrm{~d} E_{L}
$$

then $\mathcal{A}_{s}\left(\xi_{s}\right)$ is also a solution and verifies the SODE condition.

8. Affine Lagrangians on the velocities

In this section, we consider a particular case of degenerate Lagrangians: affine Lagrangians on the velocities. We study the almost-product structures adapted to ω_{L} that, in fact, are the Ehresmann connections in $T Q$. As in section 4.1 , by using the second-class constraints, we construct an almost-product structure on $T^{*} Q$ which gives the 'admissible' dynamic on the Hamiltonian side. The second-order differential equation problem is also studied.

An affine Lagrangian on the velocities L on $T Q$

$$
L\left(q^{A}, \dot{q}^{A}\right)=\mu_{A}(q) \dot{q}^{A}+f\left(q^{A}\right)
$$

may be globally defined as follows:

$$
L=\hat{\mu}+f^{V}
$$

where $\mu=\mu_{A}(q) \mathrm{d} q^{A}$ is a 1 -form on Q and $f^{V}=f \circ \tau_{Q}$. Here $\hat{\mu}: T Q \longrightarrow \mathbb{R}$ denotes the function defined by:

$$
\hat{\mu}\left(X_{q}\right)=\left\langle\mu(q), X_{q}\right\rangle \quad \forall X_{q} \in T_{q} Q .
$$

The energy and the Poincare-Cartan forms are respectively

$$
E_{L}=-f^{V} \quad \alpha_{L}=-\mu^{V} \quad \omega_{L}=\mathrm{d} \mu^{V}
$$

We have that $V(T Q) \subset \operatorname{ker} \omega_{L}$ and, hence
$\operatorname{dim} \operatorname{ker} \omega_{L} \leqslant 2 \operatorname{dim}\left(V\left(\operatorname{ker} \omega_{L}\right)\right)$.
L is a Lagrangian of type Π II according to the classification by Cantrijn et al [5].
Assume that the 2 -form $\mathrm{d} \mu$ is symplectic. In that case, we have that $\operatorname{ker} \omega_{L}=V(T Q)$ and ($T Q, \mathbf{d} \mu^{v},-f^{\vee}$) is a presymplectic system with a global dynamics. Consider an almost-product structure adapted to the presymplectic form ω_{L}. Then, we are giving a complementary of the vertical distribution, in other words, a connection in the tangent bundle $T Q$ (see [18]). Given a connection Γ in $T Q$ denote by h the horizontal projector and by v the vertical projector, respectively.

Since $\mathrm{d} \mu$ is symplectic, there exists a unique vector field X_{f} such that

$$
i_{X_{f}}(-\mathrm{d} \mu)=\mathrm{d} f
$$

that is, X_{f} is the Hamiltonian vector field with energy f. Since the complete lift X_{f}^{c} of X_{f} verifies that

$$
\begin{equation*}
i_{\chi_{j}^{c}} \omega_{L}=\mathrm{d} E_{L} \tag{9}
\end{equation*}
$$

Then, given a connection Γ, we fix a solution of (9) by taking $h\left(X_{f}^{C}\right)=X_{E_{L}, h}^{C}=X_{f}^{H}$, which is the horizontal lift of X_{f} with respect to Γ.

The almost-product structure defined by the projectors (h, v) of the connection will define a Poisson bracket on $T Q$ if and only if the horizontal distribution Im h is integrable, that is, if the connection is flat.

The Legendre transformation is given by

$$
\begin{array}{ll}
\text { Leg: } & T Q \longrightarrow T^{*} Q \\
& \left(q^{A}, \dot{q}^{A}\right) \longmapsto\left(q^{A}, \mu_{A}\right)
\end{array}
$$

and then the $M_{1}=\operatorname{Im} \mu$. From proposition 6.1, the almost-product structure defined by (h, v) is projectable onto $\operatorname{Leg}(T Q)=M_{1}$ because $\operatorname{ker} \omega_{L}=\operatorname{Im} v=V(T Q)$. We have that ω_{1} is symplectic. Moreover, the map

$$
\begin{array}{ll}
\phi: & Q \longrightarrow \operatorname{Leg}(T Q)=M_{1} \\
& \left(q^{A}\right) \longmapsto\left(q^{A}, \mu_{A}\right)
\end{array}
$$

is a diffeomorphism and Leg $=\tau_{Q} \circ \phi$. Since $\left(\phi^{-1}\right)^{*} \mathrm{~d} \mu=\omega_{1}$ we get that ϕ is a symplectomorphism. From proposition 6.3, for each flat connection in $T Q$, the projection $\tau_{Q}: T Q \longrightarrow Q$ is a Poisson map, where we consider the Poisson bracket $\{,\}_{h}$ on $T Q$ and the Poisson bracket $\{,\}_{\mathrm{d} \mu}$ defined by the symplectic form $\mathrm{d} \mu$ on Q.

All the primary constraints $\Phi_{A}=p_{A}-\mu_{A}, 1 \leqslant A \leqslant m$, are second class since

$$
\left\{\Phi_{A}, \Phi_{B}\right\}=\frac{\partial \mu_{B}}{\partial q^{A}}-\frac{\partial \mu_{A}}{\partial q^{B}}
$$

and the matrix $\left(C_{A B}\right)=\left(\left\{\Phi_{A}, \Phi_{B}\right\}\right)$ is regular because $\mathrm{d} \mu$ is symplectic. As in subsection 4.1, consider the almost-product structure (\mathcal{P}, \mathcal{Q}) on $T^{*} Q$ given by the projector

$$
\begin{aligned}
\mathcal{Q} & =C^{A B} X_{\Phi_{A}} \otimes d \Phi_{B} \\
& =C^{A B}\left(\frac{\partial}{\partial q^{A}}-\frac{\partial \mu_{A}}{\partial q^{C}} \frac{\partial}{\partial p_{C}}\right) \otimes\left(\mathrm{d} p_{B}-\frac{\partial \mu_{B}}{\partial q^{D}} \mathrm{~d} q^{D}\right) .
\end{aligned}
$$

Then, $\operatorname{Im} \mathcal{P}=\operatorname{ker} \mathcal{Q}$ is generated by the vector fields

$$
X_{A}=\frac{\partial}{\partial q^{A}}+\frac{\partial \mu_{B}}{\partial q^{A}} \frac{\partial}{\partial p_{B}} \quad 1 \leqslant A \leqslant m
$$

and, moreover, these vector fields are tangent to M_{1}.
From proposition 7.1 , given a connection Γ in $T Q$ we construct an m-dimensional submanifold S of $T Q$ where there exists a solution of the equation

$$
\left(i_{X} \omega_{L}=\mathrm{d} E_{L}\right)_{/ s}
$$

which verifies the SODE concition. Since (M_{1}, ω_{1}) is symplectic then (S, ω_{S}) is also symplectic and a straightforward computation gives us that $S=\operatorname{Im}\left(\mathrm{X}^{c}\right)$ and the unique solution is precisely $\xi_{s}=X_{/ s}$. Of course, it verifies the SODE condition. The vector field X_{H} also satisfies the SODE condition on S but, in general, it is not tangential to S.

Acknowledgments

This paper was partially supported by DGYCYT-Spain (Proyecto PB91-0142), Departamento de Economía Aplicada Cuantitativa, UNED-Spain, and CNPq-Brazil. We also acknowledge the referees for their valuable remarks.

References

[1] Barcelos-Neto J and Braga N R F 1994 Symplectic analysis of a Dirac constrained theory J. Math Phys. 35 3497-503
[2] Bhaskara K H and Viswanath K 1988 Poisson Algebras and Poisson Manifolds (London; Longman Scientific and Technical)
[3] Binz E, Sniatycki J and Fisher H 1989 Geometry of Clussical Fields (North-Holland Math. Studies 154) (Amsterdam: North-Holland)
[4] Cariñena J F 1990 Theory of singular Lagrangians Fortschr. Phys. 38 641-79
[5] Cantrijn F, Carinena J F, Crampin M and Ibort L A 1986 Reduction of degenerate Lagrangians J. Geom. Phys. 3 353-400
[6] Dirac P A M 1964 Lecture on quantum mechanics, Belfer Graduate School of Science, Yeshiva University, New York
[7] Dubrovin B A, Giordano M, Marmo G and Simoni A 1993 Poissons Brackets on Presymplectic Manifolds Int. J. Mod. Phys. A 8 3747-71
[8] Gil O, Michor and Neuwirter M 1992 Pseudo-nemannian metrics on spaces of bilinear structures Quart. J. Math. Oxford 43 201-21
[9] Gotay M J 1979 Presymplectic manifolds. geometric constraint theory and the Dirac-Bergmann theory of constraints Dissertation Center for Theoretical Physics. University of Maryland
[10] Gotay M J and Nester J M 1979 Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem Ann. Inst. H. Poincaré A 30 129-42
[11] Gotay M J and Nester J M 1980 Presymplectic Lagrangian systems II: the second-order differential equation problem Ann. Inst. H. Poincaré A 32 I-l3
[12] Gotay M J 1983 On the validity of the Dirac's conjecture regarding first-class secondary constraints J. Phys. A: Math. Gen. 16 1141-45
[13] Gotay M J and Tuynman $1989 R^{2 n}$ is a universal symplectic manifold for reduction Lett. Math. Phys. 18 55-9
[14] Grifone J 1972 Structure presque-tangente et connexions, I Ann. Inst. Fourier, Grenoble 22 287-334; Structure presque-tangente et connexions. II Anm. Inst. Fourier, Grenoble 32 291-338
[15] Klein J 1962 Espaces variationnels et mécanique Ann. Inst. Fourier, Grenoble 12 1-124
[16] Krupkova O 1994 A geometric setting for higher-order Dirac-Bergmann theory of constraints J. Math. Phys. 35 6557-76
[17] de Leon M and Rodrigues P R 1988 Degenerate Lagrangian systems and their associated dynamics Rendiconti di Matematica ser VII, vol 8 pp 105-30
[18] de Leon M and Rodrigues P R 1989 Methods of Differential Geometry in Analytical Mechanics (North-Holland Math. Ser. 152) (Amsterdam: North-Holland)
[19] de Leon M and Rodrigues P R 1991 Second order differential equations and degenerate Lagrangians Rendiconti di Matematica e delle sue aplicazioni ser VII, vol 11 pp 715-28
[20] Naveira A M 1983 A classification of Riemannian almost-product manifolds Rendiconti di Matematica e delle sue aplicazioni ser VII, vol 3 577-92
[21] Pitanga P and Mundin K C 1989 Projector in constrained quantum dynamics Nuovo Cimento A 101 345-52
[22] Pitanga P 1990 Symplectic projector in constrained systems Nuovo Cimento A 103 1529-33
[23] Sanmartín-Carbón M E 1995 La variedad de las métricas casi-fibradas para una foliación riemanniana Publ. Depat. Geometría y Topología Santiago de Compostela No 83
[24] Sudarshan E C G and Mukunda N 1974 Classical Dynamics: A Modern Perspective (New York: Wiley)
[25] Sundermeyer K 1982 Constrained Dynamics (Berlin: Springer)
[26] Vaisman I 1994 Lectures on the geometry of Poisson manifolds Progress in Mathematics vol 118 (Basel: Birkhäuser)
[27] Wipf A 1994 Hamilton's formalism for systems with constraints Lecture Notes in Physics vol 434 (Berlin: Springer)

[^0]: || E-mail address: ceem102@cc.csic.es
 ब E-mail address: ceedd05@cc.csic.es
 $\dagger \dagger$ E-mail address: pitanga@if.ufrj.br

