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Abstract. Singala Lagrangian systems are studied in the framework of almost-product 
structures The choice of an appropriate almost-product structw prmi ts  us to obtain the 
dynamics. The relationship with the D i m  bracket is also elucidated. 

1. Introduction 

The study of singular Lagrangian systems goes back to the seminal works of Dirac 
and Bergmann (see [6,24,25,3]). Their algorithm was later globalized by Gotay and 
Nester [9,10,1 I], who introduced to the game the crucial role played by the almost-tangent 
structure of the phase space of velocities (see also the papers by Klein [ 151 and Grifone [14]). 
In fact, besides the ambiguity in the dynamics, the equations of motion have to be of second 
order. 

The aim of  this paper is to take a new look at degenerate Lagrangian systems from 
the geometrical point of view of almost-product structures. Roughly speaking, an almost- 
product structure on a manifold M consists of  two complementary distributions on M. 
Therefore, if L : T Q -+ R is a singular Lagrangian function, it is quite natural to take an 
almost-product structure on T Q such that one of the two complementary distributions is just 
the singular distribution kerwL. The ‘projection’ of the system onto the regular distribution 
would give a ‘regular’ system with a completely determined dynamics. This approach is an 
alternative way of considering a quotient by the characteristic distribution kerwr. as studied 
by Cantrijn et nf [51. 

The use of almost-product structures in order to obtain the ‘true’ dynamics of the 
singular system was proposed in several recent papers (see de L e h  and Rodrigues [17, 191, 
Pitanga [21,22], Dubrovin etal [7] and references therein). In this paper, our approach is as 
follows. Consider a singular Lagrangian function L : T Q  -+ Iw with presymplectic form 
w’ and denote by M I  the manifold of  primary constraints. Assume for simplicity that there 
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are no secondary constraints. If all the primary constraints are second class, then an almost- 
product structure on the phase space of momenta T’Q may be defined and the projection 
of a Hamiltonian vector field corresponding to any extended Hamiltonian function gives the 
dynamics. Notice that the almost-product structure is closely related to the Dirac bracket. 
On the other hand, if all the constraints are first class, the dynamics is determined up to the 
choice of an almost-product structure on MI adapted to the presymplectic form wl ,  where 
ol is the restriction of the canonical symplectic form up.  Of course, if there are constraints 
of first and second class, we can combine both procedures. We remark that the role played 
by the second-class constraints is very similar to non-holonomic constraints in mechanics 
(see Pitanga [21]). In the mixed case we have to take two almost-product shwctures, one of 
them on T‘Q and the other one on MI. If there are secondary constraints, we can perform 
a similar procedure with minor changes. 

The paper is structured as follows. Section 2 is devoted to recalling some results on 
almost-product structures adapted to presymplectic structures. In fact, a Poisson bracket may 
be defined in a presymplectic manifold by using an adapted almost-product structure. In 
section 3 we recall the DiraoBergmann-Gotay-Nester algorithm. The case of Lagrangian 
systems admitting a global dynamics is considered in section 4. Suitable almost-product 
structures are defined in order to fix the dynamics and our procedure is compared with 
the ‘classical’ ones. The case of Lagrangian systems with secondary constraints is studied 
in section 5. The Lagrangian and Hamiltonian formalisms are related by using Legendre- 
projectable almost-product structures on the velocity space in section 6, and the second-order 
differential equation problem is solved in section 7. The special case of affine Lagrangians 
on the velocities is studied in section 8. This type of Lagrangians deserves special features 
since the adapted almost-product structures coincide with the connections in the sense of 
Ehresmann. Several examples are studied throughout the paper in order to illustrate our 
procedure. 

2. Almost-product structures adapted to presymplectic forms 

In this section we recall some definitions and results on almost-product structures (see [18] 
and [7]). 

An almost-product structure on a manifold M is a tensor field F of type (1, 1) on M 
such that FZ = id. The manifold M will be called an almost-product manifold (see [18]) 

If we set: 

M de Le6n et a1 

A =  f(id+F) B =  $(id-F) 
then A and B are complementary projectors, i.e. A + I3 = id, A’ = A, B2 = €3, 
AB = BA = 0. 

We denote by Im A and Im B the corresponding complemenmy distributions. Hence 
T M  = Im A Im B. We denote by A* and B* the transpose operators and Im A* and 
h a ”  will be their corresponding images. 

Dejinition 2.1. 
almost-product structure F on M is said to be adapted to w if 

Let (M, o) be a presymplectic manifold with a presymplectic form w. An 

kero = kerd  

Define the linear mapping b : X ( M )  -+ A ’ ( M )  by b(X) = ixw. If F is adapted too,  
the restriction of b to the distribution A induces an isomorphism b : Im A -+ Im A’ of 
Cm-modules. 



A new look at degenerate Lagrangian dynamics 4953 

Then, for an arbitrary I-form 01 the equation 

i x w  = A*a (1) 

admits a unique solution 
xf.4 = &fa. Now, we define a bracket of functions as follows: 

such that x(,,d) E Im A. For a function f on M we put 

if, gld = @(X/.d, X8.d) 

where f, g E Cm(M): { , ]A satisfies all the properties of a Poisson bracket except the 
Jacobi identity, i.e. 

(i) Iuf, ~ J A  = a ( f .  gla. for all a E 

(iii) {f.gld = -k, fld 
(ii) If + g ~ h l d  = {f, h)d + k y  h)d  

(iv) { f ,gh ld=[ f ,g )dh+g l f ,h )d  
for all f. g, h E Cm(M).  

We are going to prove that the Jacobi identity is equivalent to the integrability of the 
almost-product structure F (see Dubrovin et ul 171). Let us recall that an almost-product 
structure F is said to be integrable if both distributions ImA and ImB are integrable. In 
our case, the distribution Im B = ker o is always integrable, but Im A is not necessarily so. 
We first prove the following lemma: 

Lemma 2.1. 

ix , , , ,A@(z)  + ~ i x , , . , , x ~ , & J ( ~ )  = B*(dg)[Xf,d. Azl - B*(df)[xg,d, Azl 
v z E X ( M )  v f, g E C W ( M ) .  

Proof: The proof follows by straighforward computation. 

Proposition 2.1. The bracket [ , ).A defined by the almost-product structure F satisfies the 
Jacobi identity if and only if the almost-product structure F is integrable. 

Proof: If { , ]A satisfies the Jacobi identity then 

Xi/.gla = [x(g.dl. X(/.d)l 

for any two functions f and g on M .  Since the vector fields xy,d) span ImA thus ImA 
is integrable. Therefore, the almost-product structure F is integrable (see [18]). 

Conversely, if F is integrable then from lemma 2.1 we deduce that: 

ix,,,," = ilx,.a.xr,.ulo(Z). 

Therefore, the vector fields Xlf.81a and [&/.A), &,A)] differ by an element of kero. But, 
since the almost-product structure F is integrable, we deduce that [x(f,d]. X(8,d)] E Im A. 

0 

As a consequence, if we assume that F is integrable, we have a Poisson manifold 
( M ,  [ , 1.4) whose symplectic foliation is just Im A. Furthermore, the symplectic form 
on each leaf L is just the restriction of the presymplectic form to L. If we denote 
by ild : T*M -+ T M  the linear mapping defined by (hd(df),dg) = [g, f ] ~ ,  then 
xf.d = hd(df). Thus, XHJf = {f, HIA, for any function f, where H : M -+ R is a 
Hamiltonian function. 

Thus, Xlf,rlA.d = [x(x,dl* x(f,d)l. 
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Remark 2.1. In 171 an almost-product structure was called a generalized connection. The 
justification of this name is. the following. Suppose that kerw defines a regular foliating 
distribution, i.e. it is well-defined the quotient manifold I!? = h4/ kerw and we have a fibred 
manifold R : M -+ I!?. Hence I m d  defines a connection in r in the sense of Ehresmann 
since ker Tlr = kero. 

Remark 2.2. The existence of integrable almost-product structures on manifolds is a very 
difficult problem. A recent work on that topic is the paper by Gil etal IS] (see also 123,201). 
They proved that the space of all almost-product structures which are adapted to a foliation 
F on a manifold M is an analytic real manifold (of infinite dimension). The problem now 
is to identify which of them are integrable. 

3. The constraint algorithm 

Let Q be an m-dimensional manifold. Denote by re : T Q  -+ Q the canonical projection. 
If (qA), 1 < A 4 m are local coordinates on a neighbourhood U of Q, we denote by 
(q , q ), 1 < A < m, the induced coordinates on TU. A ' A  

Consider a Lagrangian L : TQ -+ iW such that the Hessian matrix 

(-) 
is not regular. This type of Lagrangian is called singular or degenerate. Let EL be the 
energy associated with L, defined by EL = C L  - L,  where C is the Liouville vector field 
on TQ. We denote by (YL the PoincarMartan I-form defined by (YL = J*(dL)  and, by w~ 
the PoincarMartan 2-form given by WL = -&L, where 3 is the canonical almost-tangent 
structure on TQ. We obtain a presymplectic system (TQ,wL,  E L )  and wL is supposed to 
be of constant rank. In the regular case, W L  is symplectic and then the equation of motion 

ixoL = dEL (2) 
has a unique solution F L ,  the Euler-Lagrange vector field; moreover, eL is a second-order 
differential equation (SODE for brevity), that is, J$L = C. In the degenerate case, (2) has 
no solution, in general, and even if it exists it will be neither unique nor a sODE. 

The Legendre map Leg : T Q  -+ T * Q  is locally written as 
A . A  L a  : (q , q  ) -+ (qA,pA) 

where P A  = aL/aQA are the generalized momenta. We suppose that L is almost regular, 
i.e. M I  = Leg(TQ) is a submanifold of T*Q and Leg is a submersion onto M I  with 
connected fibres. In particular, this implies that the Hessian matrix is of constant rank. We 
denote by Leg, : T Q  -+ M I  the restriction of Leg : T Q  -+ T'Q to its image. The 
submanifold M I  will be called the primary constraint submanifold. Moreover, we have 
that ker TLeg  = kerwL n V ( T Q ) .  If the Lagrangian is almost regular, the energy EL is 
constant along the fibres of Leg. Therefore, EL projects onto a function h ,  on MI, i.e. 
hl(leg(x)) = E L ( x ) ,  V x  E TQ. 

Let he  be the Liouville I-form and W Q  = -dhp the canonical symplectic form 
on T'Q. Since OQ i s  symplectic, we have a Poisson bracket on T'Q defined by 
(F, G] = o Q ( X ~ ,  X,) , V F, G E C Y T * Q ) .  If we denote by i : MI -+ T'Q the 
natural embedding of M1 into T'Q, then we obtain a presymplectic system (MI,wI ,  hl) ,  
where WI = i * w p  

which describe MI; they are the 
primary constraints, following the Dirac terminology (see [6]). Notice that if h4, is a 

There appear m - k independent constraints 
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closed submanifold, then it is generated by a set of globally defined functions (see for 
instance 1131). If H is an arbitrary extension of hi to T * Q ,  all the Hamiltonian functions 
of the form 

(3) 

where AA are Lagrange multipliers, are weakly equal, that is, l?, = HIM, = hl .  The 
Hamilton equations of the motion are written in terms of the canonical Poisson bracket of 
T'Q as follows: 

I? = H + x A @ ~  

M' 

This shows that there exists an ambiguity in the description of the dynamics. Since OQ is 
symplectic, a solution of the equation i x w ~  = d H  always exists. The constraints must be 
preserved in the time or, equivalently, the solution X must be tangent to MI. Then we get 

(I@'. f i ) + h A { & E > @ A ) )  /MI = o .  
The vanishing of these expressions can lead two kinds of consequences: some of the 
arbitrary functions XA may be determined or new constraints may arise. These new 
constraints are called secondary constraints. The primary and secondary constraints define 
the submanifold Mz. 

Now, we can proceed in a similar way with the secondary constraints, because they 
should also be conserved in time. This process may be continued and if the initial problem 
is solvable, we arrive at some final constraint submanifold Mf where 'consistent' solutions 
exist. 

It is possible to give a classification of the constraints generated by this algorithm in 
order to clarify the ambiguity of the dynamics. A constraint @ of Mj (the i-ary constraint 
submanifold) is said to be first class if ( @ , & A ] / u ,  = 0 for each constraint @A of Mi, 
and second class otherwise. Then, the coefficients of the primary first-class constraints on 
M, in (3) are completely undetermined, while the coefficients of the primary second-elass 
constraint are completely fixed. 

For a more geometric point of view. the Gotay-Nester algorithm globalizes the Dirac- 
Bergmann algorithm (see [9,4]). The Gotay-Nester algorithm is applicable in  more general 
situations than the Dirac constraint algorithm. In fact, in 191, they develop a constraint 
algorithm for a generic presymplectic system (S, O, H). They consider the points of S 
where 

ixw = dH (4) 
has a solution and suppose that this set S, is a submanifold of S. Nevertheless, the solutions 
of (4) on S, are not necessarily tangent to S,. Hence, we consider the points of Sz on which 
there exists a solution which is tangent to S,. Thus, a new submanifold S, is obtained and 
the proccess may be continued. We have the following sequence of submanifolds: 

, , , + Sx --f . . . -f s, -+ s, = s. 
Alternatively, these submanifolds can be described as follows: 

Si = ( X  E S I U(H)  = O .  V U E  T x S L l ]  

where 

TxSLl  = [ U  E T,S I +)(U. U )  = 0 , V U E T x S i - ~ ) .  
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We call Sz the secondary constraint submanifold, S, the tertiary constraint submanifold, 
and, in general, Si is the i-ary constraint submanifold. If the algorithm stabilizes, that is, 
there exists a positive integer k such that Sk = &+I and dim& t 0, then we have a final 
submanifold S, where, by construction, a solution X on SJ exists, i.e. X E T(Sf) verifies 
that 

M de Le6n et al  

The Gotay-Nester algorithm generalizes the Dirac constraint algorithm when we consider 
the particular presymplectic system ( M I .  01, hl).  In [9,10], Gotay and Nester have proved 
that the presymplectic systems (TQ, or. E L )  and ( M I ,  W I ,  h i )  are equivalent, that is, both 
descriptions, Lagrangian and Hamiltonian ones, are related by the Legendre transformation. 

4. Lagrangian systems with a global dynamics 

First, we suppose that the presymplectic system ( T Q . w L ,  E L )  admits a global dynamics, 
i.e. there exists at least a vector field 5 on T Q  such that 6 satisfies the equation of the 
motion i t w ~  = dEL. In such a case, the submanifold MI = Leg(TQ) of T'Q is the final 
constraint submanifold or, in other words, there are no secondary constraints. 

We distinguish three particular cases: 

(i) all the primary constraints are second class, 
(ii) all are first class, and 
(iii) there exist first- and second-class constraints. 

5 .( 

4.1. All the primary constraints are second class 

We denote by Q A ,  1 < A < s, the constraints of M I .  The matrix with elements 
CAB = IQA, Q B }  is non-singular on M I  and, in the sequel, we assume for simplicity that 
this matrix is non-singular in the entire phase space T'Q. This matrix is also skewsymmetric 
and, then, the number of second-class constraints is even. We denote by (CA*) its inverse 
matrix. 

As in [2], we consider the smooth distribution D generated by the vector fields X o r .  
A direct computation shows that 

D'(x) = {U E TxT*Q / ~ Q ( x ) ( u .  W) = 0 V w E D(x))  = T,Mi 

Let Q : D e  D' 4 D be the projection onto D along D' and P = id -Q. The projector 
Q is given by 

V x E M i .  

Q = C a s X o ~  @ d o E  

Take the2-form '2, = P*WQ (that is, P*uQ(X, Y) = OQ(PX, PY)). S Z D  is apresymplectic 
form with constant rank 2m - s. Moreover, the almost-product structure (P, Q) is adapted 
to '20, that is, kerP = kerSZD = D. Thus, we can define a bracket IF ,  G J D ,  called the 
Dirac bracket. on T*Q as follows: 
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Consider now the projected Hamiltonian function hl : M I  -+ W defined by hl o Leg = 
EL.  We can extend hl to a function H on a neigborhood U of T'Q and the Dirac theory 
argues that the Hamiltonians on U should be of the form 

H = H + h A Q ? A .  

We consider the Hamiltonian vector field X f i .  The consistency of the theory demands that 
the constraints 0~ be preserved by X i ;  geometrically this means that the vector field X f i  
must be tangent to MI. 

Consider the vector field 
?XH = XH - C A B { 0 ' ,  ! f ) X O A .  

By definition of the almost-product structure ( P ,  Q), P X H  is tangent to M I  and its restriction 
to MI, P X H , ~ ,  , is the unique solution of the equations of motion, that is, 

iPx,,,Ns 01 = dhi 
because 01 is symplectic. Moreover, if the distribution D is integrable, then the Dirac 
bracket { . JD is in fact a Poisson bracket. In that case, when we consider on MI the 
Poisson bracket ( 11 defined by the symplectic structure 01 and on T'Q the Dirac bracket 
[ , } D .  we get that the canonical embedding i : M I  -+ T * Q  is a Poisson morphism, that 
is, 

i * [ F ,  G)D = { P F ,  i*G)l 
The above results are summarized in table 1. 

V F, G E Cm(T*Q) .  

Table 1. Second-class primary consmints 

T'Q 

OQ 

I .  I 

RD 0 1  

I .  11 

Example 4.1. Let L : TR4 + R be the Lagrangian defined by (see [I]) 

uqA,  4 ~ )  = (q2 + q3)q1 + q 4 4 3  + ; ( (q4)2  - 2q2q3 - ( q 3 ) 2 ) .  

Since 

we obtain the following primary constraints: 
4 01=p1-42-q3  Q ? z = p 2  0 3 = p 3 - q  0 4  = p4 
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All of them are second-class constraints. Let C be the matrix 

M de Le6n et a1 

Hence, we obtain an almost-product structure ('P. Q) defined by 

Q = C A B X ~ A  @ d Q B  

or, in canonical coordinates on T'Q 

The presymplectic 2-form QD is 

QD = dq' A dpi - dq3 A dp2 + dq3 A dp3 + dpi A dp2 - dp2 A dp4 + dps A dpa. 

The I-form 01 is given in local coordinates (qA) on M, by 

0.11 = dq' Ad$ +dql  Adq3 +dq3 Adq4 

which is obviously a symplectic form. The unique solution &,, of the equation ixol = dhl 
is precisely 

Therefore, if H is an arbitrary extension of h l  to T'Q then we set P(XH),nrl =cM,. The 
Lagrangian L is affine on the velocities. The general case will be studied in section 8. 

4.2. All the primary constraints are offrst  class 

We denote by #, 1 S i 4 p ,  the first-class constraints. Since [#,4j],Ml = 0, then x,, 
1 < i < p. the Hamiltonian vector field of &, is tangent to MI. Notice that the submanifold 
M I  is coisotropic into T'Q. 

Since kerw, is generared by the resrrjctjons of the Hamjltonian vector fields X# of the 
first-class constraints, in order to fix the gauge, we take an almost structure (AI, a,) on MI 
adapted to keroi . Moreover, if the almost-product structure is integrable, we can define a 
Poisson bracket on Mi as follows: 

(f ,gld,  =o l (X/ .d , ,Xg .d~)  v f , g  E Cw(Mi) 
where xf,d, and X&d, are the unique vector fields on Mi which belong to Imdl  and verify 
that ix,,a,ol = d;df and ix,,,oi = d;dg, respectively. Therefore, if is a solution of 
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the equation of motion, that is, ijwl = dhl. we can select a unique solution A16 such that 
Al.$ E Im Al. Thus we have fixed the gauge. 

The results of this section are summarized in table 2. 

Table 2. First-class primary constraints. 

Now, consider an arbitrary extension H to T*Q of the Hamiltonian hl : M I  -+ R. 
Since we have a global dynamics, the Hamiltonian vector field XH is tangent to MI, i.e. 
X x l r r ,  E %MI) and 

ix,,),, 01 = dhl . 
We fix the gauge by taking d l ( X x l a ,  ). 

The classical procedure is the following (see [27]). Choose functions [ f j  , 1 < j < p ] ,  
on T*Q such that the matrix ({@;, f j ] )  = (c ' j )  is regular. The determinant of this matrix is 
called the Fadeev-Popov determinant. If we impose the tangency of the Hamiltonian vector 
fields of the Hamiltonian functions f? = H + Ai@ to the submanifold defined by the new 
constraints ( f j ] ,  we get that 

Thus we have fixed the gauge. It is easy to prove that fixing the gauge is equivalent to take 
an almost-product structure ('F, &) on T*Q where 

& = ~ ( j X 6  @ d f'. 

The almost-product shucture (P,  Q) restricts to MI and this restriction ('P,#, , e,,,) is 
adapted to 01. Thus 

P ( X H ) / , ,  = Xhl'PIM, , 

L = i(41 + 4d*. 

&ample 4.2. Consider the Lagrangian function L : TR' -+ W defined by 

(see Krupkova [16]). 
(q ' ,  q2. q3, 4', 4'. q3) the induced ones on TR3. 

Here (q1 .q2 .q3)  are the standard coordinates on W' and 
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The energy and the Poincar&Cartan forms are 

Er = i ( 4 1  + 42)' = L 

~ Y L  = (41 t 4z)dql t (41 + 4 N q 2  
Or. = dql A drjl + dql A dqz t dq2 A d4l+ dq2 A dqz . 

There are no secondary constraints, i.e. we have a global dynamics. Since 

we deduce that the submanifold M I  of T'W3 is defined by the following primary constraints: 

$ i % ] = p I - p Z = o  $ i%z=p3=0 .  

Since ($i%1,42] = 0. then both constraints are tirst class. If we take coordinates 
(4'. q2. 4'. P I )  on MI, we obtain that 

01 = i ' q  = dql Adpl +dq2 Adpl 

where 

i(q' ,qZ,q3. PI) = (9 ' . 42 ,q3 .  PI, P1.0). 

Thus, kerol is generated by 

The almost-product structure (A I ,  B,) on M I  defined by 

where BI = id-AI; (Al. B1) is integrable and adapted to wt.  Then it defines a Poisson 
bracket ( , )U,  on MI. Since 

we get 

{q1~q21d, = o  (q1*q31A, = o  (42, q31a, = 0 
~ql ,P i ld l  = - I  Iq2,Pl1A, = - I  (433PI).4, =o.  

If 
then we fix a unique solution by taking dl (0 = x h , , A , .  In that case, we have 

is a vector field on MI which is a solution of the equations of motion, i.e. igwl = dhl, 
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4.3. There existfirst- and second-chs constraints 

We denote by aA, I < A < s the second-class constraints and by $', 1 4 i < p .  the 
first-class constraints. 

As in the first case, we can construct an almost-product structure ('P, &) on T"Q with 
Q given by 

& = C A B X ~ A  @dQ'. 

Here, (CAB) is the inverse matrix of ( { @ A ,  @'I). We also have the presymplectic form 
QD = P"wp with constant rank 2m - s and the Dirac bracket 

IF ,  G } D  = IF, GI - { F ,  @A)c~6{48,  GI.  
If we consider an arbitrary extension H of the Hamiltonian hl ,  since we have a global 

dynamics, then the vector field P(X,) is tangent to M I .  Now, we fix the gauge taking the 
vector field dI(P(XH)IM,) ,  where (Ai, E l )  is some almost-product structure adapted to 01. 

The the results of this section are summarized i n  table 3. 

Table 3. First- and Second-class pnmary constraints. 

T'Q T'Q 

(P. 0) 

MI 

5. Lagrangian systems with secondary constraints 

We denote by I Q A ,  @ ; 1 < A < s , I < i < p )  the set of primary second- and first-class 
constraints. 

We apply the Gotay-Nester algorithm to the presymplectic system (MI, 01, h i )  and we 
obtain a sequence of submanifolds 

Mf --t .. .  + Mk + Mk-1 -+ . , .  + M2 + MI -f T'Q.  

Here, we suppose that the algorithm stabilizes, that is. there exists a positive integer k such 
that Mk+l = Mk and dim Mk > 0. We denote by MI the final constraint submanifold. The 
constraint submanifold will be determined by all the primary and secondary constraints (for 
simplicity, we call secondary constrain each constraint which is not primary). Now, we 
can classify all these constraints of Mf in two classes: first-class constraints and second- 
class. We denote by {&' , 1 < B < S} the secondary second-class constraints and by 
{@ , 1 < j < j} the secondary first-class constraints. The primary second-class constraints 
of M I  are also second-class on Mf but the primary first-class constraints may be first or 
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second class on M,. Then, we can suppose that {q5i' , 1 < i' < p'] are primary first-class 
constraints which are also first class on M, and (f" , 1 < i" < p"]  are primary first-class 
constraints which are second class on M,. where p'+ p" = p .  We then have the following 
classification of constraints on M,: 

{$", cjJ , 1 < i' < p' . I < j < j] 

M de Le6n et a1 

first-class constraints on M, 

(f, Q A ,  68 , I < i" < p" , I < A < s , I < E 6 F] 
second-class constraints on M,. 

We denote by {xu) all the second-class constraints on M, which are used to define an 
almost-product structure (P ,  42) on T'Q, where the projector Q is defined as follows: 

Q = CapX,= @ dx' 

(Cwp) being the inverse of the matrix ({xu, ~ 8 ) ) .  As in subsection 4.1, we define the Dirac 
bracket 

[F, G ) D  = (F. '3) - {F, X " I ~ ~ ~ ( X ~ .  GI 

for any functions F .  G E Cm(T*Q). 
We now consider a local extension H of hi to T*Q. Take the vector field X H  and its 

projection P ( X H ) .  Then, 'P (XH)  is tangent to M,, and, moreover, it is a solution of the 
equation of motion, that is 

In order to fix the gauge, consider an almost-product structure ((dl),, (Bl),)  on M, 
such that it is adapted to the distribution kerwl nTM,, i.e. ker(B1)f = kerwl nTM,. Now, 
it is sufficient to take (AI ) , (P (XH)I~ , )  and the gauge will remain fixed. If we consider 
the 'extended' Hamiltonian [an extension of the Hamiltonian hl where we have account of 
all the constraints of M,. see [12]), then it is convenient to use, in order to fix the gauge, 
an almost-product structure [Af. i3,) on M, adapted to kerw,, where or = ' ,be.  Here, 
we denote by j ,  : M, -f T'Q the canonical embedding. We fix the gauge by taking 
A ~ ( P ( X H ) / ,  ). 

The resulk of this section are summarized in table 4. 

Table 4. The general 6320. 

T' Q T' Q Mf 



A new look at degenerate Lagrangian dynamics 4963 

Example 5.1. Let L : TRz  + R be the degenerate Lagrangian given by (see [4]): 

A . A  - I ,I 2+f(q1)2q2. L(q - 4  ) -5 (q  1 

Leg(ql,qz,ql,qz) = (q1.q2,q1.0) 

The Legendre map is 

and we have a primary constraint q5' = pz. Consistency of this constraints leads to a 
secondary constraint: az = q1 and, consistency of O1 gives the tertiary constraint a3 = P I .  
Since Qz and d are second-class constraints, then the projector Q is given by 

a a 
a4 aP1 

Q =  -X q t  0 dpi + X p ,  @&I = 7 0 d q i +  - @ dpi 

and the Dirac bracket { , t D  is 

( q 1 , q 2 t D  = o  ( 4 ' , p l ] D  = o  (ql>pZ)O=o 

1q2,pI)D=o (q2>pZ)D=1 {pI~pZ) fJ=o .  

The Hamiltonian hi : MI + R is 
I 2  2 . hi = ;(PI)' - $(q ) 

An arbitrary extension to T*Q is given by: H = ;(PI)' - $(qi)2q2 + Apz, whose 
Hamiltonian vector field is 

and we then have 

m e  restriction of P ( x H )  to ~3 = {(q' ,  q2. pi.  pz )  E T*P2 / q' = 0, pi = 0, p z  = 0)  is 
precisely 

and, therefore, the dynamics is fully undetermined, 

6. Legendre projectable almost-product structures 

Now, we want to relate the Lagrangian and Hamiltonian formulations when we have an 
almost-product structure which is Leg-projectable on TQ. For simplicity, we only consider 
Lagrangian systems which admit a global dynamics. A genedization for general degenerate 
Lagrangian systems is straightforward. 

The following proposition gives a necessq and sufficient condition for an almost- 
product suucture on T Q  to be projectable onto MI. 
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Proposition6.1. 
presymplectic 2-form OL. Then, f is Leg]-pmjectable onto M I  if and only if 

M de Ledn et a1 

Let f be an almost-product structure which is adapted to the 

d[Z.dX]  E V ( T Q )  V Z E kerTLeg V X E X ( T Q )  

where A and 

Proof: The almost-product structure f is projectable if and only if (see 1.51) 
(i) AmerTLeg) c kerTLeg 
(ii) Im(LZ2) c ker TLegV 2 E kerTLeg. 

are the projectors associated with f. 

Since kerTLeg = V ( T Q )  n kero,,, then A(kerTLeg) = 0. Now, for all vector fields 
Y on TQ and Z E ker TLeg, we have that 

L A Y )  = IZ, AY1 - Arz. Yl = [Z, AY1 - AlZ, AY1 - Arz, BY1 
= [Z, AY1 - Atz. AY1 = B[Z,XY1 

because kerwL is an integrable distribution. 0 

Corollary 6.1. If the almost-product structure e adapted to OL commutes with the 
canonical almost-tangent structure J ,  that is, J t  = E J ,  then f is projectable onto an 
almost-product structure on M I  if and only if 

J [ Z . A Y ] E I ~ A  VYe?i(TQ) V Z ~ k e r T L e g .  

Let F be an almost-product structure on the configuration space Q and let FC be the 
complete lift of F to TQ. Let us recall that Fc is defined by: 

F c ( X c )  = (F(X)) '  F E ( X " )  = ( F ( X ) ) "  V X E X(Q) 

where X c  and X v  denote the complete and vertical lift of the vector field X, respectively. 
FC is an almost-product structure on T Q  and Fe is integrable if and only if F is integrable. 
If A and U are the corresponding projectors of F then dC and Uc are the corresponding 
ones of Fc.  We deduce chat Im A' is, in fact, the complete lift of the distribution Im A. In 
a similar way, we have that Im U' = (Im W .  These kind of distributions are called tangent 
in 151. 

Corollary 6.2. 
onto M I .  

Proof. 

If the almost-product structure FC is adapted to WL then it is projectable 

Since J F c  = F C J ,  from corollary 6.1, we only need to prove that 

J IZ ,dCY]eImAc VYe?i(TQ) V Z ~ k e r T L e g .  

If ( X I ,  X Z .  . . . . X , ]  is a local basis of Im d then [ X ; ,  Xg. . . . , X:, X;. X;, . . . , X;) is a 
local basis of Im A'. Thus, since [Z, XYJ and [Z, Xi'] are vertical vector fields, for all 
1 < i < r, we get that F E  is projectable. 0 

Let P be an integrable almost-product structure adapted to oL and Proposition 6.2. 
projectable onto M I .  Then, its projection Fl is also integrable and adapted to 0,. 
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f roo j  The integrability of F is trivial because the Nijenhuis tensor NF of F, projects 
onto the Nijenhuis tensor N f i  of the projection F I .  

E X(M1)  such that i p l  = O  
and for all vector field Z E X ( T Q )  which is Leg]-projectable onto 2, i.e. TLegl(Z) = Z, 
we obtain that 

Since Leg;wl = WL and ke ra  = keror, then for all 

0 = Leg; ( i p 1 )  = izLeg;wl = ~ Z W L  . 
Thus, Z E k e r q  = ker A. Therefore, its projection 2 E kerAI. Hence, we have proved 

0 

Next, we suppose that P is an integrable almost-product structure on TQ which is 
adapted to W L  and projectable onto M I .  We denote by { , )A the Poisson bracket defined 
on TQ. If Fl is the projected integrable almost-product structure on MI, we know that 
Fl is adapted to WI. Denote by { , )dl the corresponding Poisson bracket on MI. We are 
going to relate both Poisson brackets. 

Lemma 6.1. 

ProoJ 

that k e r q  c kerAl, That kerdl c kerwl is proved by a similar device. 

For a function f' on M I ,  we have that XiOLa,,j is projectable onto Xi,a,. 

First, we prove that XioLeRr l .~  is Legl-projectable, that is, 

[ X f Q L e g t , ~ ,  21 E kerTLeg V 2 E kerTLeg. 

In fact, 

ilxj.,rxRl.~, ilw = L x ~ , ~ , , , ~ ~ ~ w L  - i iLxiOkc, , .p~ 

- _  - i i d  (fXj",,,&) 

= -iid (A*d(f 'o  Leg])) 

= -iiLeg;d ( A ; ~ ( J ) )  
= O  

from which we get [XfoL,,,~, 21 E kerwL. From proposition 6.1, we deduce that 

[XjcLcg,.A, 51 E V V Q )  

and, XfoLeg, ,~  is thus projectable. Moreover, since 

f~~,,. .~,,p~ = 2 4 f o  Legd 

its projection TLeg(Xi,,,,,A) verifies that 
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Pro03 
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From lemma 6.1, we have that 

t h y  j Z t d i  Le& = Leg; (mM,(XjL,.+. Xf2..4,)) 

= w (Xfi o ~ c g ,  . X I  X f > o ~ e g ,  .A) 

= (3  0 Leg'. X 0 W ~ I J  
for any functions f l  and fz on MI. 0 

A direct Example 6.1. 
computation shows that kerm' is generated by 

Consider the Lagrangian function defined in example 4.2. 

aq2 * aq3 aql aqz ' aQ3 
Let F be an almost-product structure on Q defined as follows: 

The matrix representations of the corresponding projectors, A and B, are respectively 

1 1 0  0 -1 0 

The complete lifts of the (1, I)-tensor fields A' and Bc are: 

A.=(  A 0  0 A )  and E = ( :  i )  
The almost-product structure Fc is integrable and adapted to the presymplectic form 0'. 

Since 
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7. The second-order differential equation problem 

As we know, a solution of the equation i x w L  = dEL (if it exists) is not necessarily a SODE, 
that is a vector field X on T Q  such that J X  = C. If L is almost regular, in 19,111, Gotay 
and Nester have constructed a submanifold S of the final constraint submanifold Pf on 
which there exists a vector field e such that 

( i p L  = dEL) 1.7 (55 = (6) 
By introducing a suitable almost-product structure on P, we shall construct a submanifold 
S of Pf on which there exists an almost-product structure (As, Bs) and a vector field e 
such that verifies (6) and, moreover, ( E Im As. 

We first suppose that the presymplectic system ( T Q ,  O L ,  E L )  admits a global dynamics. 
Consider an almost-product structure (2, g) adapted to kerwL which is projectable onto an 
almost-product structure (AI, Bl) on M t .  

Remark 7.1. If t is any solution of equation of motion i x o r .  = dEL then A(.$) is a 
solution, too. Moreover, if the almost-product structure is Leg-projectable then A(() is 
projectable onto A I Z ,  where Z is any solution of the equation i x o l  = dhl. 

From remark 7.1, given a vector field e on T Q  which is a solution of the equation of 
motion 

dEL 

then the vector field &) is projectable onto Al(Z) and both are solutions of their 
respective equations of motion. As in [9, 111, there exists a unique point x in each fibre 
of Leg, : T Q  4 MI (where Leg = il o Leg), such that A(6) verifies the second-order 
differential equation (SODE) condition at x ,  i.e. (J(&))) ,  = C,. Consider the subset 

(7) S = ( X  E T Q  / (J(&e))L = CL). 

In local coordinates, if &e) is locally written as 

Then, if z = Leglix) E M I ,  and we identify z with the fibre which contains x, we deduce 
that E A  is constant along the fibre. Moreover, 

a 
a p  U = J(&)  - C  = (EA - G A ) -  

is tangent to the fibres. Let a( t )  = (qA( f ) .  q A ( t ) )  be the integral curve of (I which contains 
the point x with coordinates ( q t ,  q;). We deduce that 

o(t) = (si, -e-'(EA - 46% ' 

Then, we obtain 

Thus, the point i with coordinates (4:. EA) IS ' in ' the same fibre than x ,  since the fibres 
are closed. Moreover, U ( i )  = 0, and, therefore, &) verifies the SODE condition at the 
point X. 
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We obtain a differentiable section U : MI -+ T Q  of Leg1 and its image S = o(M1) 
is a submanifold of TQ, on which &) verifies the SODE condition. In general, &) is not 
tangent to S. but the vector field TU(AI (Z ) )  is tangent to S. it is a solution of the equation 

and also satisfies the SODE condition. Moreover, since U : M I  -+ S is a diffeomorphism, 
the almost-product structure (AI ,  U ] )  on Mt induces an almost-product structure (AS, Os) 
on S such that for any solution of equation ES 

Summarizing, we have obtained the following result: 

Proposition 7.1. Let t be any solution of the equation of motion 

+OL = dEL 

and (A, B) an almost-product structure adapted to OL which is Leg-projectable onto an 
almost-product structure on M I  and let S be the submanifold defined in (7). Then: 

(i) There exists an almost-product structure (As, OS) adapted to the restriction of OL to S. 
(ii) If cs is any solution of (8) then A&) is a solution which verifies the SODE condition. 

In the general case, we apply the Gotay-Nester algorithm to the presymplectic system 
given by (TQ, O L ,  Er) .  If the algorithm stabilizes. we denote by Pj. the final constraint 
submanifold. Consider on PJ an almost-product structure adapted to keroL n TPJ which 
is projectable onto MI. Hence. by using a similar procedure to that used in proposition 7.1, 
we can obtain an almost-product structure (A, Bs) on S adapted kerwL n T S  and a unique 
solution of the equation of motion ixwL = dEL tangent to S which also verifies the SODE 
condition. Moreover, that solution belongs to Im As. We can also consider the equation: 

where OM, = j ; q ,  being jf : Pj -+ TQ the canonical embedding. Let (As, L?,) be an 
almost-product structure adapted to kerop, which is projectable to MJ (the final constraint 
submanifold on the Hamiltonian side). Then, from proposition 7.1 we obtain an almost- 
product structure adapted to OS where OS = j:mL, being j s  : S + P, the canonical 
embedding. Moreover, if is a solution of the equation 

then A&) is also a solution and verifies the SODE condition 

8. Affine Lagrangians on the velocities 

In this section, we consider a particular case of degenerate Lagrangians: affine Lagrangians 
on the velocities. We study the almost-product structures adapted to OL that, in fact, are 
the Ehresmann connections in TQ. As in section 4.1, by using the second-class constraints, 
we construct an almost-product structure on T*Q which gives the ‘admissible’ dynamic on 
the Hamiltonian side. The second-order differential equation problem is also studied. 
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An affine Lagrangian on the velocities L on T Q  

L(qA. q A )  = & A ( q ) 4 A  f f ( q A )  

may be globally defined as follows: 

L = p +  f V  

where p = pA(q)dqA is a I-form on Q and f V  = f o s p .  Here p : TQ + W denotes 
the function defined by: 

bCXy) = M q ) .  Xy) 

EL=-f  a '= -p  

V Xy E Tq Q . 
The energy and the PoincarSartan forms are respectively 

" = d p  V . 
We have that V(TQ) c k e r q  and, hence 

dimkeror. < Zdim(V(kero')). 

L is a Lagrangian of type III according to the classification by Cantrijn et al 151. 
Assume that the 2-form dfi is symplectic. In that case, we have that kero' = V ( T Q )  

and (TQ, dp", -f") is a presymplectic system with a global dynamics. Consider an 
almost-product structure adapted to the presymplectic form OL. Then, we are giving a 
complementary of the vertical distribution, in other words, a connection in the tangent 
bundle T Q  (see [18]). Given a connection r in T Q  denote by h the horizontal projector 
and by U the vertical projector, respectively. 

ix,(-dpL) = d f  

Since dp is symplectic, there exists a unique vector field X, such that 

that is, X, is the Hamiltonian vector field with energy f .  Since the complete lift X; of X, 
verifies that 

iyoL 1 = dE'. (9) 

Then, given a connection r, we fix a solution of (9) by taking h ( X F )  = XF,,,, = X,", 
which is the horizontal lift of X, with respect to r. 

The almost-product structure defined by the projectors (h ,  U) of the connection will 
define a Poisson bracket on T Q  if and only if the horizontal distribution In h is integrable, 
that is, if the connection is flat. 

The Legendre transformation is given by 

L e g :  T Q  -+ T'Q 

(qA,QA) H ( q A , f l A )  

and then the M I  = I m p .  From proposition 6.1, the almost-product structure defined by 
(h ,  U) is projectable onto Leg(TQ)  = MI because kerw' = Im U = V(TQ). We have that 
0, is symplectic. Moreover, the map 

q5 : Q -+ Leg(TQ) = M I  
(9') +-+ (qAv PA) 

is a diffeomorphism and Leg = TQ o q5. Since (q5-')*dfi = w ,  we get that q5 is a 
symplectomorphism. From proposition 6.3, for each flat connection in TQ,  the projection 
7p : T Q  --f Q is a Poisson map, where we consider the Poisson bracket ( , ) h  on TQ 
and the Poisson bracket ( , )d,, defined by the symplectic form d p  on Q. 
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All the primary constraints @ A  = P A  - pa. 1 < A 6 m, are second class since 

and the matrix ( C A ~ )  = ( { @ A ,  O B ] )  is regular because d p  is symplectic. As in 
subsection 4.1, consider the almost-product structure (P. &) on T'Q given by the projector 

Q = CAEX*, @d@E 

Then, Im P = ker Q is generated by the vector fields 

and, moreover, these vector fields are tangent to MI. 

submanifold S of TQ where there exists a solution of the equation 
From proposition 7.1, given a connection r in T Q  we construct an m-dimensional 

( ixor .  = dEdls 
which verifies the SODE condition. Since (MI, W I )  is symplectic then (S, W S )  is also 
symplectic and a straightforward computation gives us that S = Im (Xc) and the unique 
solution is precisely 6s = XFS. Of course, it verifies the SODE condition. The vector field 
XH also satisfies the sODE condition on S but, in general, it is not tangential to S. 
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