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Abstract. Singular Lagrangian systems are studied in the framework of almost-product
structures, The choice of an appropriate almost-product structure permits us to obfain the
dynamics. The relationship with the Dirac bracket is also elucidated.

1. Introduction

The study of singular Lagrangian systems goes back to the seminal works of Dirac
and Bergmann (see [6,24,25,3]). Their algorithin was later globalized by Gotay and
Nester [9, 10, 111, who introduced to the game the crucial role played by the almost-tangent
structure of the phase space of velocities (see also the papers by Klein [15] and Grifone [14]).
In fact, besides the ambiguity in the dynamics, the equations of motion have to be of second
order.

The aim of this paper is to take a new look at degenerate Lagrangian systems from
the geometrical point of view of almost-product structures. Roughly speaking, an almost-
product structure on a manifold M consists of two complementary distributions on M.
Therefore, if L : TQ — R is a singular Lagrangian function, it is quite natural to take an
almost-product structure on T Q such that one of the two complementary distributions is just
the singular distribution kere;. The ‘projection’ of the system onto the regular distribution
would give a ‘regular’ system with a compietely determined dynamics. This approach is an
alternative way of considering a quotient by the characteristic distribution kerw;, as studied
by Cantrijn er al [5].

The use of almost-product structures in order to obtain the ‘true’ dynamics of the
singular system was proposed in several recent papers (see de Ledn and Rodrigues [17, 19],
Pitanga [21,22], Dubrovin ez al [7] and references therein). In this paper, our approach is as
follows, Consider a singular Lagrangian function L : TQ — R with presymplectic form
oy and denote by M the manifold of primary constraints. Assume for simplicity that there
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are no secondary constraints. If all the primary constraints are second class, then an almost-
product structure on the phase space of momenta 7@ may be defined and the projection
of a Hamiltonian vector field corresponding to any extended Hamiltonian function gives the
dynamics. Notice that the almost-product structure is closely related to the Dirac bracket.
On the other hand, if all the constraints are first class, the dynamics is determined up to the
choice of an almost-product structure on M, adapted to the presymplectic form «;, where
@) 1s the restriction of the canonical symplectic form wg. Of course, if there are constraints
of first and second class, we can combine both procedures. We remark that the role played
by the second-class constraints is very similar to non-holonomic constraints in mechanics
(see Pitanga [21]). In the mixed case we have to take two almost-product structures, one of
them on 7* @ and the other one on M. If there are secondary constraints, we can perform
a similar procedure with minor changes.

The paper is structured as follows. Section 2 is devoted to recalling some results on
almost-product structures adapted to presymplectic structures. In fact, 2 Poisson bracket may
be defined in a presymplectic manifold by using an adapted almost-product structure. In
section 3 we recall the Dirac-Bergmann—Gotay—Nester algorithm. The case of Lagrangian
systems admitting a global dynamics is considered in section 4. Suitable almost-product
structures are defined in order io fix the dynamics and our procedure is compared with
the ‘classical’ ones. The case of Lagrangian systems with secondary constraints is studied
in section 5. The Lagrangian and Hamiltonian formalisms are related by using Legendre-
projectable almost-product structures on the velocity space in section 6, and the second-order
differential equation problem is solved in section 7. The special case of affine Lagrangians
on the velocities is studied in section 8. This type of Lagrangians deserves special features
since the adapted almost-product structures coincide with the connections in the sense of
Ehresmann. Several examples are studied throughout the paper in order to illustrate our
procedure.

2. Almost-product structures adapted to presymplectic forms

In this section we recall some definitions and results on almost-product structures (see [18)
and [7]).
An almost-product structure on a manifold M is a tensor field F of type (1,1) on M
such that F? = id. The manifold M will be called an almost-product manifold (see [18])
If we set:

A=3L@Gd+F)  B=0d—F)
then A and B are complementary projectors, ie. A+ B = id, A? = A4, B = B,
AB=8BA=0.
We denote by Im.4 and Im B the corresponding complementary distributions. Hence

TM = ImA & ImB. We denote by A* and B* the transpose operators and Im .A* and
im 8" will be their corresponding images.

Definition 2.]. Let (M, w) be a presymplectic manifold with a presymplectic form @. An
almost-product structure F on M is said to be adapted to e if

kerw = ker A.

Define the linear mapping b : £(M) —> A'(M) by b(X) = ixw. If F is adapted to w,
the restriction of b to the distribution A induces an isomorphism » : Im.4 —> Im.A* of
C®.modules.
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Then, for an arbitrary 1-form « the equation
iyw=A'w (1)

admits a unique solution X, 4 such that X 4 € ImA. For a function f on M we put
Xoa= X4 rA. Now, we define a bracket of functions as follows:

{figta=w(X;4 X, 4)

where f,g € C®(M): {, }a satisfies all the properties of a Poisson bracket except the
Facobi identity, i.e.

() laf,gla=alf.gla. forallaecR
@) {f+g.hla=1{f rta+{g h}la
(iii} {f, gla = ~{g, Fla

V) {f, ghla = {f, glah + 8{f. hla
forall f.g,h e COM).

We are going to prove that the Jacobi identity is equivalent to the integrability of the
almost-product structure F (see Dubrovin et al {7]). Let us recall that an almost-product
structure F is said to be integrable if both distributions Im .4 and Im B are integrable. In
our case, the distribution Im B = ker w is always integrable, but Im A is not necessarily so.
We first prove the following lemma;

Lemma 2.1.

X @2 ix e x, 0@0(Z) = B (dgt X5 4, AZ] — B () Xpn, AZ]
VZeX(M Y fgeCoM).

Proof. The proof follows by straighforward computation. a

Proposition 2.1, The bracket { , }4 defined by the almost-product structure F satisfies the
Jacobi identity if and only if the almost-product structure F is integrable.

Proof. U {, }4 satisfies the Jacobi identity then

Xiros = X, Xl

for any two functions f and g on M. Since the vector fields Xy 4, span Im .4 thus Im .4
is integrable. Therefore, the almost-product structure F is integrable (see [18]).
Conversely, if F is integrable then from lemma 2.1 we deduce that;

iXU‘.xuw(Z) = ilXu:.m.Xu.Ale(z) .

Therefore, the vector fields Xy, and [X(s 4y, X(;,.0] differ by an element of kerw. But,
since the almost-product structure F is integrable, we deduce that [X ¢ 4y, X )] € Im A,
Thus, Xi7.0.04 = Xt X =

As a consequence, if we assume that F is integrable, we have a Poisson manifold
(M, {, }4) whose symplectic foliation is just Im.4. Furthermore, the symplectic form
on each leaf £ is just the restriction of the presymplectic form to £. If we denote
by fl4 : T*"M — TM the linear mapping defined by (§4(df),dg} = {g, Fl., then
Xsa =ha(df). Thus, Xy of = {f, H}a, for any function f, where H : M -~— Risa
Hamiltonian function,
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Remark 2.1. In [7] an almost-product structure was called a generalized connection. The
justification of this name is.the following. Suppose that kerw defines a regular foliating
distribution, i.e. it is well-defined the quotient manifold M = M/ ker w and we have a fibred
manifold = : M — M. Hence Im A defines a connection in 7 in the sense of Ehresmann
since ker T = ker w,

Remark 2.2.  The existence of integrable almost-product structures on manifolds is a very
difficuit problem. A recent work on that topic is the paper by Gil et al [8] (see also [23, 20]).
They proved that the space of all almost-product structures which are adapted to a foliation
F on a manifold M is an analytic real manifold (of infinite dimension). The problem now
is to identify which of them are integrabie.

3. The constraint algorithm

Let @ be an m-dimensional manifold. Denote by g : TQ — { the canonical projection.
If (g*), 1 € A € m are local coordinates on a neighbourhood U of Q, we denote by
(g%, d*), 1 € A < m, the induced coordinates on TU.

Consider a Lagrangian L : TQ — R such that the Hessian matrix

3L
8g49¢8

is not regular. This type of Lagrangian is called singular or degenerate, Let E; be the
energy associated with L, defined by E; = CL — L, where C is the Liouville vector field
on T Q. We denote by «; the Poincaré—Cartan 1-form defined by oy = J*(dL) and, by w;
the Poincaré—Cartan 2-form given by w; = —dua,, where J is the canonical almost-tangent
structure on T'Q. We obtain a presymplectic system (T Q, w., Ep) and w;, is supposed to
be of constant rank. In the regular case, e, is symplectic and then the equation of motion

ywy = dEL (2}

has a unique solution &, the Euler-Lagrange vector field; moreover, £, is a second-order
differential equation (SODE for brevity), that is, J£; = C. In the degenerate case, (2) has
no solution, in general, and even if it exists it will be neither unique nor a SODE.

The Legendre map Leg : TQ — T*Q is locally written as

Leg : (g*,¢") ~ (@*, pa)

where pa = 8L/34¢* are the generalized momenta. We suppose that L is almost regular,
ie. My = Leg(TQ) is 2 submanifold of T*Q and Leg is a submersion onto M, with
connected fibres. In particular, this implies that the Hessian matrix is of constant rank, We
denote by Leg) : TQ —> M) the restriction of Leg : TQ —> T*Q to its image. The
submanifold M will be called the primary constraint submanifold. Moreover, we have
that ker TLeg = kerw; N V(T Q). If the Lagrangian is almost regular, the energy E; is
constant along the fibres of Leg. Therefore, E; projects onto a function 7; on My, ie.
hi(Leg(x)) = Er(x),Vx €T Q.

Let Ag be the Liouville I-form and wg = —dAp the canonical symplectic form
on T*Q. Since wg is symplectic, we have a Poisson bracket on T*Q defined by
IF,G) = wo(Xr, Xg) , YF,G € C®(T*Q). If wedencte by / : My — T*Q the
natural embedding of M; into T*Q, then we obtain a presymplectic system (M), wy, A1),
where ) = i*wp.

There appear m — k independent constraints ¢* which describe M;; they are the
primary constraints, following the Dirac terminology (see [6]). Notice that if M; is a
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closed submanifold, then it is generated by a set of globally defined functions (see for
instance [13]). If H is an arbitrary extension of A; to T*Q, all the Hamiltonian functions
of the form

H=H4 0" (3)

where A, are Lagrange muoltipliers, are weakly equal, that is, F}/Ml = Hj, = h. The
Hamilton equations of the motion are written in terms of the canonical Poisson bracket of
T*Q as follows:

dg” A5 dps _ 7 A_

o ={¢”, H} & = {pa, H} ¢" =0.
This shows that there exists an ambiguity in the description of the dynamics. Since wg is
symplectic, a solution of the equation iywg = dH always exists. The constraints must be
preserved in the time or, equivalently, the solution X must be tangent to Af;. Then we get

(102, By + 24107, 04) =0,

jM|
The vanishing of these expressions can lead two kinds of consequences: some of the
arbitrary functions i, may be determined or new constraints may arise. These new
constraints are called secondary constraints. The primary and secondary constraints define
the submanifold M.

Now, we can proceed in a similar way with the secondary consiraints, becanse they
should also be conserved in time. This process may be continued and if the initial problem
is solvable, we arrive at some final constraint submanifold My where ‘consistent’ solutions
exist.

It is possible to give a classification of the constraints generated by this algorithm in
order to clarify the ambiguity of the dynamics. A constraint ¢ of M; (the i-ary constraint
submanifold) is said to be first class if {¢, 9" b, = O for each constraint o* of M;,
and second class otherwise. Then, the coefficients of the primary first-class constraints on
My in (3) are completely undetermined, while the coefficients of the primary second-class
constraint are completely fixed.

For a more geometric point of view, the Gotay—Nester algorithm globalizes the Dirac—
Bergmann algorithm (see (9,41). The Gotay-Nester algorithm is applicable in more general
situations than the Dirac constraint algorithm. In fact, in [9], they develop a constraint
algorithm for a generic presymplectic system (5, @, H). They consider the points of §
where

ixw = dH (@)

has a solution and suppose that this set 55 is a submanifold of S. Nevertheless, the solutions
of (4) on S; are not necessarily tangent to S2. Hence, we consider the points of 5> on which
there exists a solution which is tangent to S2. Thus, a new submanifold S is obtained and
the proccess may be continued. We have the following sequence of submanifolds;

e S S 5 =5,

Alternatively, these submanifolds can be described as follows:
Si={xeS|uH)=0, Vve TS}

where
LSt ={veS|o@)uv)=0, YueTS5,}.
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We call §; the secondary constraint submanifold, Sy the tertiary constraint submanifold,
and, in general, §; is the i-ary constraint submanifold. If the aigorithm stabilizes, that is,
there exists a positive integer k£ such that S = S and dim §; > 0, then we have a final
submanifold Sy where, by construction, a solution X on §; exists, i.e. X € X(8y) verifies
that

{ixw =dH)s, . 3

The Gotay—Nester algorithm generalizes the Dirac constraint algorithm when we consider
the particular presymplectic system (M, ey, A)). In [9, 10), Gotay and Nester have proved
that the presymplectic systems (T Q, wr, £1) and (M1, wy, k) are equivalent, that is, both
descriptions, Lagrangian and Hamiltonian ones, are related by the Legendre transformation.

4. Lagrangian systems with a global dynamics

First, we suppose that the presymplectic system (T Q, «wy, E;) admits a global dynamics,
i.e. there exists at least a vector field £ on TQ such that ¢ satisfies the equation of the
motion iz = dEz. In such a case, the submanifold M, = Leg(T' Q) of T is the final
constraint submanifold or, in other words, there are no secondary constraints,

We distinguish three particular cases:

(i) all the primary constraints are second class,
(ii) afi are first class, and .
(iii) there exist first- and second-class constraints.

4.1. All the primary constraints are second class

We denote by ®4, 1 € A < s, the constraints of M;. The matrix with elements
C4% = {®4, 7} is non-singular on M, and, in the sequel, we assume for simplicity that
this matrix is non-singular in the entire phase space T* . This matrix is also skewsymmetric
and, then, the number of second-class constraints is even. We denote by (Cap) its inverse
matrix.

As in [2), we consider the smooth distribution D generated by the vector fields Xga.
A direct computation shows that

Drx)={veT,T*Q [ wp(x)v,w) =0 Y w e D(x)) = T. M, YxeM.

Let Q : D@ D* —> D be the projection onto D along D and P = id --Q. The projector
Q is given by

L =CapXea @d@g.

Take the 2-form 2p = P*wp (thatis, P*ep(X, ¥) = wo(PX, PY)). Qp is a presymplectic
form with constant rank 2m - 5. Moreover, the almost-product structure (P, Q) is adapted
to Qp, that is, kerP? = ker&p = D. Thus, we can define a bracket {F, G}p, called the
Dirac bracket, on T*0Q as follows:

{F,GYp =Qp(Xr, X5) =wp(PXr, PXg)
= wo(Xr — Cap{®®, F1Xor, X6 — Can{®®, G} X gw)
= {F1 G} - {F| q)A}CHB[q)Bv G}'
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Consider now the projected Hamiltonian function k) : M; — R defined by hjoleg =
E;. We can extend & to a function H on a neigborhood &/ of T*Q and the Dirac theory
argues that the Hamiitonians on I should be of the form

H=H+ 1,04,
We consider the Hamiltonian vector field X 5. The consistency of the theory demands that
the constraints ¢, be preserved by X3; geometrically this means that the vector field X 5
must be tangent to M.
Consider the vector field
Py =Xy — Capi®?, H)Xon.

By definition of the almost-product structure (P, @), PXy is tangent to M, and its restriction
to M, PXny,, » is the unique solution of the equations of motion, that is,
i'PXn,er w) = dhy

because @ is symplectic. Moreover, if the distribution D is integrable, then the Dirac
bracket { , }p is in fact a Poisson bracket. In that case, when we consider on M, the
Poisson bracket { }; defined by the symplectic siructure w; and on T*Q the Dirac bracket
{, }p, we get that the canonical embedding i : My — T*Q is a Poisson morphism, that
is,

i*{F,G}p ={i*F,i*G) Y FGeC®T ).

The above results are summarized in table 1.

Table 1. Second-class primary constraints

™Q T*Q M

wo Qb [2]

i} vl {.h
)]

Example 4.1. Let L : TR* — R be the Lagrangian defined by (see [1])

Lg* ¢") = (> + a5 +¢*¢® + 1(@*)” - 2¢%¢° - (¢%)P).

Since
L 5 5 aL aL 3L
gp 3" g°+q I2/] 537 P3 % g P4 Py

we obtain the following primary constraints:

b =p—-¢-q Dy = p2 @3 = p; —gq* DOy =p,.
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All of them are second-class constraints. Let C be the matrix

0 -1 =1 0
1 ¢ 0 0

ABy _ A Py =
€y=qotofp=] . o o
0O 0 1 0

Hence, we obtain an almost-product structure (P, @) defined by
Q=CapXor ®@db?

or, in canonical coordinates on T*(Q

2 a a3
—®dg*+ - ®dg* - ®dp:

9 2
Q_E;E@dq +6‘q2 3q %2 —

+a+a+a+a d ®d
og! gt P @apy — 34 P3

g 3 ]
+(Fé?'5q“ ap)®d”4

The presymplectic 2-form Qp is
Qp=dg' Adp1 —dg’ Adp,+dg’ Adps+dpiAdpr —dpy Adps +dps Adps.
The 1-form e is given in local coordinates (g*) on M; by
w) =dg' Adg? +dq’ Adg® +dg® Adg?

which is obviously a symplectic form. The unique solution £y, of the equation ixw; = diy
is precisely

8 , 9
Em=g——-q*— P¥e qaq4-

ag! 8g? T4

Therefore, if H is an arbitrary extension of &; to T*Q then we set P(X H)/u = Ey,. The
Lagrangian L is affine on the velocities. The general case will be studied in section 8.

4.2. All the primary constrainis are of first class

We denote by ¢/, 1 < p, the first-class constraints. Since {¢/, ¢/}, =0, then Xy,
1<i < p,the Hamnltoman vector field of ¢, is tangent to M,. Notice that the submanifold
M, is coisotropic into T*Q.

Since ker w; s generated by the restrictions of the Hamiltonian vector fields X, of the
first-class constraints, in order to fix the gauge, we take an almost structure (A4;, B;) on M,
adapted to kerw;. Moreover, if the almost-product structure is integrable, we can define a
Poisson bracket on M; as follows:

{fi 8kt = o1 (X a,0 X)) V f,8 € C¥(My)

where Xy 4, and X, 4, are the unique vector fields on M; which belong to Im A; and verify
that iy, , @3 = Ajdf and iy, wi = Ajdg, respectively. Therefore, if £ is a solution of
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the equation of motion, that is, i;w, = dh;, we can select a unique solution A& such that
A1¢ € Im.A;. Thus we have fixed the gauge.
The results of this section are summarized in table 2.

Table 2. First-class primary constraints.

™0 M

wg w]

{.1 {. }.A\
(A1 Br)

Now, consider an arbitrary extension H to T*Q of the Hamiltonian &, : M, — R.
Since we have a global dynamics, the Hamiltonian vector field X is tangent to M, ie.
XH/M; [ E(M]) and

iX"-"M| ey = dhy .

We fix the gauge by taking A(Xx),, ).

The classical procedure is the following (see [27]). Choose functions {f/, 1 < j < p}
on T*Q such that the matrix ({¢', f/}) = (c"¥) is regular. The determinant of this matrix is
called the Fadeev—Popov determinant. If we impose the tangency of the Hamiltonian vector
fields of the Hamiltonian functions # = H 4 A;¢' to the submanifold defined by the new
constraints { 4}, we get that

A-E/MI = (Cl'j{H! ¢J})/Ml .

Thus we have fixed the gauge. Ii is easy io prove that fixing the gauge is equivalent to take
an almost-product structure (P, &) on T*Q where

Q= ciXy @ dfj.

The almost-product structure (P, Q) restricts to My and this restriction (P, , Qy,,) is
adapted to @;. Thus

P(XH)/MI = Xh],'P,rMI .
Example 4.2. Consider the Lagrangian function L : TR? — R defined by
= 341+ &)

(see Krupkovd [16]). Here (g', 4% g°) are the standard coordinates on R* and
(q', ¢% q°. ', g% ¢*) the induced ones on TR>.
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The energy and the Poincaré~Cartan forms are

Er=3d+g) =L
ap = (g1 +¢2)dq1 + (g1 +g2)dgp
twr =dg1 Adgi +dgy Adgy + dga Addy +dga Adga.
There are no secondary constraints, i.e. we have a global dynamics. Since

oL .y, aL ., . aL
p=—=9 +4 Pznaéz-—q +4 pi= E;T“'O

we deduce that the submanifold M, of T*R? is defined by the following primary constraints:
$1=p—p2=0 ¢2=p3=0.

Since {¢, ¢} = 0, then both constraints are first class. If we take coordinates
(q', qz, q3, P1) on M, we obtain that

@) = i*wg =dg’ Adp; +dg* Adp,
where
i@, 9% ¢ pi) =@ % 4% pi, p1,0).
Thus, kerw, is generated by
{i 8 i]
g’ dg' dg?

The almost-product structure (A, By} on M, defired by

d d ] a o a ]
A’(a—q')-@" *“'(a?z)-aq‘l *“‘((-a'q‘a)*0 A’(ap)‘arl

where By = id —A;; (A1, By) is integrable and adapted to w;. Then it defines a Poisson
bracket { , }u, on M. Since

) 3
qu_Al = —-a—pl' Xq2'Al = —"5?
1738 9
Xq”L‘_AI =0 X]J'.Al =5 5 ('a—q‘—l + 'a-?)
we get
{q!»qg}ﬁu =0 {q]rqs}A: =0 {qz’ qs}AJ =0

lgh.pla==-1 g8 pla=-1 (g% pila =0.
If € is a vector field on M, which is a solution of the equations of motion, i.e. izw; = dhy,

then we fix a unique solution by taking 4 (£) = X}, 4,. In that case, we have

8 2
Xppoty = 155 + Pi_g"
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4.3. There exist first- and second-class constraints

We denote by @4 1 £ A < 5 the second-class constraints and by ¢, 1 € i £ p. the
first-class constraints.
As in the first case, we can construct an aimost-product structure (P, @) on T*Q with

Q given by
Q= CupXepa ®d¢8.

Here, (C4p) is the inverse mamix of ({®”, ®5}). We also have the presymplectic form
Qp = P*wp with constant rank 2m — s and the Dirac bracket

{F,Glp = |F, G} — {F, ®*)C45{®®, G}.

If we consider an arbitrary extension H of the Hamiltonian f,, since we have a global
dynamics, then the vector field P(Xy) is tangent to M;. Now, we fix the gauge taking the
vector field Ay (P(Xy)y,, ), where (A, By) is some almost-product structure adapted to @y.

The the results of this section are summarized in table 3.

Table 3. First- and second-class primary constraints,

T T My

wo Qo @

£} {.1o { by
P, (AL B

5. Lagrangian systems with secondary constraints

We denote by {®4,¢'; 1< A<s, 1 <i< p}iheset of primary second- and first-class
constraints.

We apply the Gotay—Nester algorithm to the presymplectic system (Mj, o1, ip) and we
obtain a sequence of submanifolds

My —> ooy My — My —> - — My — My — T*Q.

Here, we suppose that the algorithm stabilizes, that is, there exists a positive integer & such
that My = M, and dim M, > 0. We denote by M; the final constraint submanifold. The
constraint submanifold will be determined by all the primary and secondary constraints (for
simplicity, we call secondary constrain each constraint which is not primary). Now, we
can classify all these constraints of My in two classes: first-class constraints and second-
class. We denote by {®% , 1 < B < §} the secondary second-class constraints and by
{¢/ , 1< j < p} the secondary first-class constraints. The primary second-class constraints
of M, are also second-class on M, but the primary first-class constraints may be first or
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second class on My. Then, we can suppose that {¢"J I € i’ € p'} are primary first-class
constraints which are also first class on My and {cf)' 1 <i" < p"} are primary first-class
constraints which are second class on M;, where p’+ p” = p. We then have the following
classification of constraints on Mj;:

(0.8, 1€V <p . 1<j<pl first-class constraints on My
{¢*’”,@*,¢3, 1" p", 1ISA<s, 1<BKH)
second-class constraints on M.

We denote by {x®} all the second-class constraints on My which are used to define an
almost-product structure (P, @) on T*@, where the projector @ is defined as follows:

Q = CppXye ® dx?

{Cyap) being the inverse of the matrix ({x®, x*#1). As in subsection 4.1, we define the Dirac
bracket

{F, G)p = {F. G} = {F, x*|Capix”. G}

for any functions F, G € C®(T* Q).

We now consider a Jocal extension H of h; to T*(Q. Take the vector field Xy and its
projection P(X ). Then, P(Xy) is tangent to My, and, moreover, it is a solution of the
equation of motion, that is

(I'P(Xul,fMj Wy = dh]) vy

In order to fix the gauge, consider an almost-product structure ((A;}y. (Bi)s) on My
such that it is adapted to the distribution kerw) N7 My, i.e. ker(5;) £ = kerawi NTMy. Now,
it is sufficient to take (A4;);(P(Xy) " } and the gauge will remain fixed. If we consider
the ‘extended’ Hamiltonian (an extensmn of the Hamiltonian #; where we have account of
all the constraints of M, see [12]), then it is convenient to use, in order to fix the gauge,
an almost-product structure (Ay, Br) on My adapted to kerwy, where wy = ifwg. Here,
we denote by jr : M; —=+ T*(Q the canonical embedding. We fix the gauge by taking
Ar(P(Xu)p,)-

The resu!fs of this section are summarized in table 4.

Table 4. The general case,

T'O T*Q Mf
weo QD
[} {.1p ((Any. (B1)p)

P, kel'(Bl)f = kerw) NT My
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Example 5.]. Let L : TR® — R be the degenerate Lagrangian given by (see [4]):
L(g*, 4% = 56"V + 3a'V".
The Legendre map is
Leg(q', g% ¢" 4D =(¢'.¢".4'.0)

and we have a primary constraint ¢' = p;. Consistency of this constraints leads to a
secondary constraint: @2 = ¢! and, consistency of ®' gives the tertiary constraint ®* = p;.
Since 2 and ®° are second-class constraints, then the projector @ is given by

] 8
= 1 _ 1
Q=-XpaRdp + X, @dg = —aq' ® dg +—8p1 ® dpy

and the Dirac bracket {, }p is
9. ¢le=0  {G.plo=0 {g".plp=0
{¢*, pilp=0 {@% pato =1 {p1. p2to=0.
The Hamiltonian #; : M; — R is
m=3m) ~30e")e"

An arbitrary extension to T*Q is given by: H = 3(m)* — 3(g")’g* + Ap2, whose
Hamiltonian vector fieid is

Yo = +8)L 8+l+ )Y 3+12_ axy a
H=1P P2apl 3 p23p2 32 a4 Pzaq, ap
1, .2 dA d
* (2(" ) zan) Py
and we then have

dA 9 ar 3
= (10X = (A + pr— ) = + [ 3¢V — Pros } —— .
PO = -0 = (14 ;g ) s+ (160 - oz ) 5
The restriction of P(Xy) to M3 ={{g",¢% pr,.p) e T*R? / ¢' =0,p, =0, p =0} is
precisely

2
PXi)y =53

and, therefore, the dynamics is fully undetermined.

6. Legendre projectable almost-product structures

Now, we want to relate the Lagrangian and Hamiltonitan formulations when we have an
almost-product structure which is Leg-projectable on T Q. For simplicity, we only consider
Lagrangian systems which admit a global dynamics. A generalization for genesal degenerate
Lagrangian systems is straightforward.

The following proposition gives a necessary and sufficient condition for an almost-
product structure on 7' Q to be projectable onto M.
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Proposition 6.1. Let F be an_almost-product structure which is adapted to the
presymplectic 2-form w;. Then, F is Leg;-projectable onto M; if and only if

B[z, AX] € V(TQ) VZekerTLeg YXeX(TQ)
where A and B are the projectors associated with F,

Proof. The aimost-product structure Fis projectable if and only if (see [5])

(i) Atker TLeg) C ker T Leg
(i) Im{f.z.A) C kerTLeg¥ Z € ker T Leg.

Since kerTLeg = V(T @) Nkerewy, then Afker T Leg) = 0. Now, for all vector fields
Y on TQ and Z € ker T'Leg, we have that

LAY =12, A¥1 - A1Z. Y] = (2, A¥] - A[Z, AY] - A[Z, BY)
=[Z, A¥]1 - A[Z, Av} = B[Z, AY]

because ker ey is an integrable distribution. O

Corollary 6.1. 1f the almost-product structure _ﬁ‘ adapted to w; commutes with the
canonical almost-tangent structure J, that is, JF = FJ, then F is projectable onto an
almost-product structure on M, if and only if

JZz, AvjelmA YYeX(TQ) VYZekerTLeg.

Let F be an almost-product structure on the configuration space @ and let F© be the
complete lift of F to T Q. Let us recall that F* is defined by:

FOX®y = (F(X))* FO(X") = (FX)Y VX eX(Q)

where X¢ and XV denote the complete and vertical lift of the vector field X, respectively.
F* is an almost-product structure on 7 Q and F° is integrable if and only if F is integrable.
If A and B are the comespending projectors of F then .4° and B° are the comesponding
ones of . We deduce that Im A° is, in fact, the complete lift of the distribution Im .A. In
a similar way, we have that Im 5° = (Im B)°. These kind of distributions are called tangent
in [5].

Corollary 6.2. If the almost-product structure F© is adapted to w; then it is projectable
onto M;j.

Progf. Since JF® = F®J, from corollary 6.1, we only need to prove that

JiZ, A°Y] € Im A° VYeX(TQ@) VZeckerTLeg.
I {X1, X2,---, X/} is a local basis of Im .4, then {X{, X5,.--, X{, X}, X3,--, X} is a
local basis of Im.A°. Thus, since [Z, X]] and [Z, X{] are vertical vector fields, for all

1 €i <€ r,we get that F© is projectable. O

Proposition 6.2. Let F be an integrable aimost-product structure adapted to w; and
projectable onto M. Then, its projection Fy is also integrable and adapted to w;.
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Proof  The integrability of F is trivial becanse the Nijenhuis tensor Nz of F, projects
onto the Nijenhuis tensor N, of the projection Fj.

Since Legjw; = wy, and ker A = ker oy, then for all Z & X(M)) such that iz = 0
and for ail vector field Z € X(T ) which is Leg,-projectable onto Z, i.e. TLeg(Z) = Z,
we obtain that

0= Leg} (izcm) =izLleglw =izw, .

Thus, Z € kerwy = ker A. Therefore, its projection Z € ker A;. Hence, we have proved
that kerew; C ker.4,. That ker.4; C kerw, is proved by a similar device. O

Next, we suppose that F is an integrable almost-product structure on T which is
adapted to w; and projectable onto M;. We denote by {, }; the Poisson bracket defined
on Q. If F) is the projected integrable almost-product structure on M), we know that
Fj is adapted to @y. Dencte by {, }4, the corresponding Poisson bracket on M. We are
going to relate both Poisson brackets.

Lemma 6.1. For a function f on M, we have that X ;... 1 is projectable onto X7 4,.
Proof. First, we prove that X7, . & is Leg-projectable, that is,
[X fopeg, i» 21 € ker TLeg Y Z e kerTLeg.
In fact,
X 21 = DXy aizon —izlx,  aor
= —izd (ix,,, o)
= —izd (Ad(f o Legy))
= ~izLegid (Ad(f))
=0
from which we get [X7,;,. i Z) e kerw,. From proposition 6.1, we deduce that
(X foregriio 21 € VT Q)
and, Xz, ,.. ;i 1s thus projectable. Moreover, since
iX; 1 401 = A'd(f 0 Leg)
its projection T Leg(X ..., 4) verifies that
ITLeg(X jppu DOWM = Ad(F).
Therefore, we obtain TLeg(X 7,1, 1) = TLeg(Xy 4). O
Proposition 6.3. The map Leg; : T(Q — M) is a Poisson morphism, that is,

{fi. Pola o Legi ={fi o Legy, fao Legi} 4 Y fi. e C®(My).
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Proof. From lemma 6.1, we have that

{F1, Fala, o Legi = Legy (wm, (X, 4, X, 1))
= DL foragy d> X froLegs &)
= {fio Legy. fao Legi}
for any functions f; and f; on M;. O

Example 6,]. Consider the Lagrangian function defined in example 42. A direct
computation shows that kerw,, is generated by

{B 2 @ G 8 3]

3q1  dq:" 3qs’ 34 94y 843
Let F be an almost-product structure on @ defined as follows:

a a ] g i} g a
F(a—ql)w”’(a{z)'%@‘a—qﬁ"’(sﬁ)-‘é‘q‘s-

The matrix representations of the corresponding projectors, .4 and B, are respectively

110 0 -1 0
A=]1 0 0 0O and B=10 10
000 0 01

The complete lifts of the (1, 1)-tensor fields A° and B° are:

A 0 B 0
c —
A_(OA) and BC—(OB).

The almost-product structure F* is integrable and adapted to the presymplectic form ey,
Since

| 3] 8 1/ 8 a
Xq‘.A‘ = —5 (Eq—’_ + a—q‘i) X42|Ae = -5 (gé-l- = .&7)
1/ 8 g
Xpp.ae =0 Xp.x= 3 (507 + )

1/ 29 d
Xpr o4 = 3 (-3? + a—gz) Xpp =0

the Poisson bracket on T @ is given by

{g',¢"tae =0 lg.¢be =0 {g% ¢l =0
{g'.¢%ae =0 (¢ P*tae=0 {3%,4*ta=0
{ghd'tae=-1  {g¢*la=-1 {g".¢*la=0
{g%.4'tae =-1 {2 ¢%lae=-1 g% ¢l =0
{2 ¢'ta=0 (% d%ar=0 {¢* ¢*lae=0.

From corollary 6.2 and from propesition 6.2, F° is Leg)-projectable. Moreover, it
projects onto the integrable almost-product structure (A;, B() defined in example 4.2,
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7. The second-order differential equation problem

As we know, a solution of the equation ixw; = dE, (if it exists) is not necessarily a SODE,
that is a vector field X on T Q such that JX = C. If L is almost regular, in [9, 11], Gotay
and Nester have constructed a submanifold § of the final constraint submanifold Py on
which there exists a vector field & such that

(iswr = dEL) (JE = C),,. (6)

By introducing a suitable almost-product structure on Py we shall consiruct a submanifold
S of Py on which there exists an almost-product structure (As, Bg) and a vector field §
such that verifies (6) and, moreover, £ € Im Ag.

We first suppose that the presymplectic system (T Q, wr, E) admits a global dynamics.
Consider an almost-product structure (A4, 53) adapted to ker w; which is projectable onto an
almost-product structure (A;, B)) on M.

Remark 7.1. If & is any solution of equation of motion ixw; = dE; then /1(5_) is a
solution, too. Moreover, if the almost-product structure is Leg-projectable then A(£) is
projectable onto A; Z, where Z is any solution of the equation ixw; = dh,.

From remark 7.1, given a vector field £ on T Q which is a solution of the equation of
motion

fng = dEL

then the vector field A(£) is projectable onto A;(Z) and both are solutions of their
respective equations of motion. As in [9, 11], there exists a unique point x in each fibre
of Legy 1 TQ — M, (where Leg = i) o Leg), such that A(£) verifies the second-order
differential equation (SODE) condition at x, i.e. (J(A(§))), = C,. Consider the subset

S={xeTQ/(JAEN: = Ci}. (7)

In local coordinates, if j(é) is locally written as
- 3 ~, 4
Apy=8"— + B4 —.
® =8+ By
Then, if z = Leg;{(x) € M;, and we identify z with the fibre which contains x, we deduce
that E4 is constant along the fibre. Moreover,

. 8
_ O =(mA Ay
U=J(AE)-C=(E q)w

is tangent to the fibres. Let o(z) = (g*(¢), g*(#)) be the integral curve of U which contains
the point x with coordinates (g, 44). We deduce that

oty = (g5, 8% — e (B — ).

Then, we obtain
% = lim o(t) = (g2, E).
=00
Thus, the point £ with coordinates (g&', E4) is in the same fibre than x, since the fibres
are closed. Moreover, U(X) = 0, and, therefore, A(£) verifies the $ODE condition at the
point x.
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We obtain a differentiable section o : M) — TQ of Leg) and its image S= a(My)
is a submanifold of T Q, on which A(E) verifies the SODE condition. In general, A(%) is not
tangent to §, but the vector field To {A,(Z)) is tangent to S, it is a solution of the equation

(ixwr =dEL),

and also satisfies the SODE condition. Moreover, since o ;. M; — § is a diffeomorphism,
the almost-product structure (A, B;) on M induces an almost-product structure (As, Bs)
on § such that for any solution of equation £g

(ixewr =dEL); - (8)
We have that
AslEs) = To(A4(2)).

Summarizing, we have obtained the following result:
Proposition 7.7, Let £ be any solution of the equation of motion
irwp =dE,

and (A, B) an almost-product structure adapted to @y which is Leg-projectable onto an
almost-product structure on M) and let § be the submanifold defined in (7). Then:

(i) There exists an almost-product structure {Ay, Bs} adapted to the restriction of wy, to S.
(i) If &5 is any solution of (8) then Ajg(£s) is a solution which verifies the SODE condition.

In the general case, we apply the Gotay-Nester algorithm to the presymplectic system
given by (TQ, wy, E;). If the algorithm stabilizes. we denote by P, the final constraint
submanifold. Consider on Py an almost-product structure adapted to kerwz N TPy which
is projectable onto M. Hence, by using a similar procedure to that used in proposition 7.1,
we can obtain an almost-product structure (Ag, 85) on § adapted kerw; M T 8 and a unique
solution of the equation of motion iyw; = dE; tangent to S which also verifies the SODE
condition. Moreover, that solution belongs to Im .45. We can also consider the equation:

ixtwp, = d(EL)s,,

where wy, = jfwg, being jr 1 Py — T Q the canonical embedding. Let (Ay, By) be an
almost-product structure adapted to kerwp, which is projectable to My (the final constraint
submanifold on the Hamiltonian side). Then, from proposition 7.1 we obtain an almost-
product structure adapted to ws where s = jiw;, being js : § — Py the canonical
embedding. Moreover, if £ is a solution of the equation

ixws = jfdEL

then As(£s) is also a solution and verifies the SODE condition.

8. Affine Lagrangians on the velocities

In this section, we consider a particular case of degenerate Lagrangians: affine Lagrangians
on the velocities, We study the almost-product structures adapted (o w, that, in fact, are
the Ehresmann connections in T Q. As in section 4.1, by using the second-class constraints,
we construct an almost-product structure on T*Q which gives the ‘admissible’ dynamic on
the Hamiltonian side. The second-order differential equation problem is also studied.
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An affine Lagrangian on the velocities L on TQ
Lig*. ¢*) = ual@)g* + F(a*)
may be globally defined as follows:
L=g+f"
where © = a(g)dg® is a 1-form on Q and f¥ = fozp. Here i : TQ — R denotes
the function defined by:
MX) = (u@g), X,) VX eT,Q.
The energy and the Poincaré—Cartan forms are respectively
Ep=~fY oy =—p” wp =du’ .
We have that V(T Q) C kerw; and, hence
dimkerw;, < 2dim(V(kerw.)).

L is a Lagrangian of type I according to the classification by Cantrijn et al [5].

Assume that the 2-form dg is symplectic. In that case, we have that kerew;, = V(I"(Q)
and (TQ,du", —f") is a presymplectic system with a global dynamics. Consider an
almost-product structure adapted to the presymplectic form wy. Then, we are giving a
complementary of the vertical distribution, in other words, a connection in the tangent
bundle T Q (see [18]). Given a connection I" in TQ denote by k the horizontal projector
and by v the vertical projector, respectively.

Since du is symplectic, there exists a unique vector field X such that

that is, Xy is the Hamiltonian vector field with energy f. Since the complete lift X5 of Xy
verifies that

ixwr=dEyL. ' ()]

Then, given a connection T, we fix a solution of (9) by taking 2(X§) = x§ gn = XF
which is the horizontal lift of X, with respect to I'. '

The almost-product structure defined by the projectors (£, v) of the connection will
define a Poisson bracket an T @ if and only if the horizontal distribution Im £ is integrable,
that is, if the connection is fat.

The Legendre transformation is given by

Leg: TQ — T*0
(g%, %) — (g%, pa)

and then the M, = Im . From proposition 6.1, the almost-product structure defined by
(h, v) is projectable onto Leg(T ) = M, because kerw, = Imv = V(T Q). We have that
@y is symplectic. Moreover, the map

¢: Q> Leg(TQ)=M,

(gh) — (g%, pa)

is a diffeomorphism and Leg = 7p o ¢. Since (¢~')*du = w; we get that ¢ is a
symplectomorphism. From proposition 6.3, for each fiat connection in T Q, the projection

1o : TQ — Q@ is a Poisson map, where we consider the Poisson bracket { , }, on TQ
and the Poisson bracket {, }q, defined by the symplectic form du on Q. ‘
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All the primary constraints ¢, = p4 — pa, 1 € A < m, are second class since

Oy Bl
{dy, Pp}= Frriaicys
and the matrix (Cag) = ([®a4, Dp)) is regular because dp is symplectic. As in

subsection 4.1, consider the almost-product structure (P, ¢)) on T*Q given by the projector
Q=C*"%Xo, ®d®s

8 dua 0 dus
B ]
dg4 39 dpc B\ 3gP

Then, Im P =ker @ is generated by the vector fields
J dup 0
3g* ' 397 app
and, moreover, these vector fields are tangent to M.

From proposition 7.1, given a connection I' in TQ we construct an m-dimensional
submanifold § of TQ where there exists a solution of the equation

Xa= I€ALm

(ixwp =dEL),

which verifies the SODE condition. Since (M}, wy)} is symplectic then (5,ws) is also
symplectic and a straightforward computation gives us that § = Im (X") and the unique
solution is precisely §5 = Xj,. Of course, it verifies the SODE condition. The vector field
X g also satisfies the SODE condition on § but, in general, it is not tangential to 5.
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